↓ Skip to main content

Cochrane Database of Systematic Reviews

Restrictive versus liberal red blood cell transfusion strategies for people with haematological malignancies treated with intensive chemotherapy or radiotherapy, or both, with or without…

Overview of attention for article published in Cochrane database of systematic reviews, January 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
15 X users
wikipedia
3 Wikipedia pages

Citations

dimensions_citation
55 Dimensions

Readers on

mendeley
341 Mendeley
Title
Restrictive versus liberal red blood cell transfusion strategies for people with haematological malignancies treated with intensive chemotherapy or radiotherapy, or both, with or without haematopoietic stem cell support
Published in
Cochrane database of systematic reviews, January 2017
DOI 10.1002/14651858.cd011305.pub2
Pubmed ID
Authors

Lise J Estcourt, Reem Malouf, Marialena Trivella, Dean A Fergusson, Sally Hopewell, Michael F Murphy

Abstract

Many people diagnosed with haematological malignancies experience anaemia, and red blood cell (RBC) transfusion plays an essential supportive role in their management. Different strategies have been developed for RBC transfusions. A restrictive transfusion strategy seeks to maintain a lower haemoglobin level (usually between 70 g/L to 90 g/L) with a trigger for transfusion when the haemoglobin drops below 70 g/L), whereas a liberal transfusion strategy aims to maintain a higher haemoglobin (usually between 100 g/L to 120 g/L, with a threshold for transfusion when haemoglobin drops below 100 g/L). In people undergoing surgery or who have been admitted to intensive care a restrictive transfusion strategy has been shown to be safe and in some cases safer than a liberal transfusion strategy. However, it is not known whether it is safe in people with haematological malignancies. To determine the efficacy and safety of restrictive versus liberal RBC transfusion strategies for people diagnosed with haematological malignancies treated with intensive chemotherapy or radiotherapy, or both, with or without a haematopoietic stem cell transplant (HSCT). We searched for randomised controlled trials (RCTs) and non-randomised trials (NRS) in MEDLINE (from 1946), Embase (from 1974), CINAHL (from 1982), Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 6), and 10 other databases (including four trial registries) to 15 June 2016. We also searched grey literature and contacted experts in transfusion for additional trials. There was no restriction on language, date or publication status. We included RCTs and prospective NRS that evaluated a restrictive compared with a liberal RBC transfusion strategy in children or adults with malignant haematological disorders or undergoing HSCT. We used the standard methodological procedures expected by Cochrane. We identified six studies eligible for inclusion in this review; five RCTs and one NRS. Three completed RCTs (156 participants), one completed NRS (84 participants), and two ongoing RCTs. We identified one additional RCT awaiting classification. The completed studies were conducted between 1997 and 2015 and had a mean follow-up from 31 days to 2 years. One study included children receiving a HSCT (six participants), the other three studies only included adults: 218 participants with acute leukaemia receiving chemotherapy, and 16 with a haematological malignancy receiving a HSCT. The restrictive strategies varied from 70 g/L to 90 g/L. The liberal strategies also varied from 80 g/L to 120 g/L.Based on the GRADE rating methodology the overall quality of the included studies was very low to low across different outcomes. None of the included studies were free from bias for all 'Risk of bias' domains. One of the three RCTs was discontinued early for safety concerns after recruiting only six children, all three participants in the liberal group developed veno-occlusive disease (VOD). Evidence from RCTsA restrictive RBC transfusion policy may make little or no difference to: the number of participants who died within 100 days (two trials, 95 participants (RR: 0.25, 95% CI 0.02 to 2.69, low-quality evidence); the number of participants who experienced any bleeding (two studies, 149 participants; RR:0.93, 95% CI 0.73 to 1.18, low-quality evidence), or clinically significant bleeding (two studies, 149 participants, RR: 1.03, 95% CI 0.75 to 1.43, low-quality evidence); the number of participants who required RBC transfusions (three trials; 155 participants: RR: 0.97, 95% CI 0.90 to 1.05, low-quality evidence); or the length of hospital stay (restrictive median 35.5 days (interquartile range (IQR): 31.2 to 43.8); liberal 36 days (IQR: 29.2 to 44), low-quality evidence).We are uncertain whether the restrictive RBC transfusion strategy: decreases quality of life (one trial, 89 participants, fatigue score: restrictive median 4.8 (IQR 4 to 5.2); liberal median 4.5 (IQR 3.6 to 5) (very low-quality evidence); or reduces the risk of developing any serious infection (one study, 89 participants, RR: 1.23, 95% CI 0.74 to 2.04, very low-quality evidence).A restrictive RBC transfusion policy may reduce the number of RBC transfusions per participant (two trials; 95 participants; mean difference (MD) -3.58, 95% CI -5.66 to -1.49, low-quality evidence). Evidence from NRSWe are uncertain whether the restrictive RBC transfusion strategy: reduces the risk of death within 100 days (one study, 84 participants, restrictive 1 death; liberal 1 death; very low-quality evidence); decreases the risk of clinically significant bleeding (one study, 84 participants, restrictive 3; liberal 8; very low-quality evidence); or decreases the number of RBC transfusions (adjusted for age, sex and acute myeloid leukaemia type geometric mean 1.25; 95% CI 1.07 to 1.47 - data analysis performed by the study authors)No NRS were found that looked at: quality of life; number of participants with any bleeding; serious infection; or length of hospital stay.No studies were found that looked at: adverse transfusion reactions; arterial or venous thromboembolic events; length of intensive care admission; or readmission to hospital. Findings from this review were based on four studies and 240 participants.There is low-quality evidence that a restrictive RBC transfusion policy reduces the number of RBC transfusions per participant. There is low-quality evidence that a restrictive RBC transfusion policy has little or no effect on: mortality at 30 to 100 days, bleeding, or hospital stay. This evidence is mainly based on adults with acute leukaemia who are having chemotherapy. Although, the two ongoing studies (530 participants) are due to be completed by January 2018 and will provide additional information for adults with haematological malignancies, we will not be able to answer this review's primary outcome. If we assume a mortality rate of 3% within 100 days we would need 1492 participants to have a 80% chance of detecting, as significant at the 5% level, an increase in all-cause mortality from 3% to 6%. Further RCTs are required in children.

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 341 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Unknown 340 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 52 15%
Student > Bachelor 41 12%
Researcher 26 8%
Other 25 7%
Student > Ph. D. Student 25 7%
Other 61 18%
Unknown 111 33%
Readers by discipline Count As %
Medicine and Dentistry 111 33%
Nursing and Health Professions 39 11%
Biochemistry, Genetics and Molecular Biology 12 4%
Social Sciences 9 3%
Pharmacology, Toxicology and Pharmaceutical Science 9 3%
Other 37 11%
Unknown 124 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 June 2021.
All research outputs
#3,216,758
of 25,461,852 outputs
Outputs from Cochrane database of systematic reviews
#5,865
of 12,090 outputs
Outputs of similar age
#61,791
of 423,187 outputs
Outputs of similar age from Cochrane database of systematic reviews
#152
of 241 outputs
Altmetric has tracked 25,461,852 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,090 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 38.2. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 423,187 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 241 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.