↓ Skip to main content

Cochrane Database of Systematic Reviews

Botulinum toxin for the treatment of strabismus

Overview of attention for article published in Cochrane database of systematic reviews, March 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

news
2 news outlets
policy
1 policy source
twitter
10 X users
facebook
1 Facebook page
wikipedia
3 Wikipedia pages

Citations

dimensions_citation
56 Dimensions

Readers on

mendeley
217 Mendeley
Title
Botulinum toxin for the treatment of strabismus
Published in
Cochrane database of systematic reviews, March 2017
DOI 10.1002/14651858.cd006499.pub4
Pubmed ID
Authors

Fiona J Rowe, Carmel P Noonan

Abstract

The use of botulinum toxin as an investigative and treatment modality for strabismus is well reported in the medical literature. However, it is unclear how effective it is in comparison to other treatment options for strabismus. The primary objective was to examine the efficacy of botulinum toxin therapy in the treatment of strabismus compared with alternative conservative or surgical treatment options. This review sought to ascertain those types of strabismus that particularly benefit from the use of botulinum toxin as a treatment option (such as small angle strabismus or strabismus with binocular potential, i.e. the potential to use both eyes together as a pair). The secondary objectives were to investigate the dose effect and complication rates associated with botulinum toxin. We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to July 2016), Embase (January 1980 to July 2016), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to July 2016), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov), and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 11 July 2016. We handsearched the British and Irish Orthoptic Journal, Australian Orthoptic Journal, proceedings of the European Strabismological Association (ESA), International Strabismological Association (ISA) and International Orthoptic Association (IOA) (www.liv.ac.uk/orthoptics/research/search.htm) and American Academy of Paediatric Ophthalmology and Strabismus meetings (AAPOS). We contacted researchers who are active in this field for information about further published or unpublished studies. We included randomised controlled trials (RCTS) of any use of botulinum toxin treatment for strabismus. Two review authors independently selected studies and extracted data. We used standard methods expected by Cochrane and assessed the certainty of the evidence using GRADE. We defined ocular alignment as an angle of deviation of less than or equal to 10 prism dioptres. Six RCTs were eligible for inclusion. We judged the included studies as at a mixture of low, unclear and high risk of bias. We did not consider any of the included studies as at low risk of bias for all domains.Two trials conducted in Spain (102 people, number of eyes not specified) compared botulinum toxin with surgery in children that required retreatment for acquired or infantile esotropia. These two studies provided low-certainty evidence that children who received botulinum toxin may have a similar or slightly reduced chance of achieving ocular alignment (pooled risk ratio (RR) 0.91, 95% confidence interval (CI) 0.71 to 1.16), binocular single vision (RR 0.88, 95% CI 0.63 to 1.23), sensory fusion (RR 0.88, 95% CI 0.63 to 1.23) and stereopsis (RR 0.86, 95% CI 0.59 to 1.25) compared with children who received surgery. One trial from Canada compared botulinum toxin with surgery in 30 adults (30 eyes) with horizontal strabismus and reported a reduced chance of ocular alignment with botulinum toxin (RR 0.38, 95% CI 0.17 to 0.85; low-certainty evidence).One trial in the UK suggested that botulinum toxin may result in a similar or slightly improved chance of ocular alignment in people with acute onset sixth nerve palsy compared with observation (RR 1.19, 95% CI 0.96 to 1.48; 47 participants, low-certainty evidence).Very low-certainty evidence from one trial from Brazil suggested that adjuvant botulinum toxin in strabismus surgery may increase the chances of ocular alignment compared with strabismus surgery alone (RR 1.83, 95% CI 0.41 to 8.11; 23 participants).One trial from China of 47 participants (94 eyes) suggested that people receiving botulinum toxin combined with sodium hyaluronate may have a similar or slightly reduced chance of achieving ocular alignment compared with botulinum toxin alone (RR 0.81, 95% CI 0.36 to 1.82; low-certainty evidence).Reported complications in people given botulinum toxin in the included trials included ptosis (range 9% to 41.66%) and vertical deviation (range 8.3% to 18.51%). Ptosis occurred less frequently when treated with botulinum toxin combined with sodium hyaluronate compared to botulinum toxin alone. Most published literature on the use of botulinum toxin in the treatment of strabismus consists of retrospective studies, cohort studies or case reviews. Although these provide useful descriptive information, clarification is required as to the effective use of botulinum toxin as an independent treatment modality. Six RCTs on the therapeutic use of botulinum toxin in strabismus, graded as low and very low-certainty evidence, have shown varying responses. These include a lack of evidence for effect of botulinum toxin on reducing visual symptoms in acute sixth nerve palsy, poor response in people with horizontal strabismus without binocular vision, similar or slightly reduced achievement of successful ocular alignment in children with esotropia and potential increased achievement of successful ocular alignment where surgery and botulinum toxin are combined. Further high quality trials using robust methodologies are required to compare the clinical and cost effectiveness of various forms of botulinum toxin (e.g. Dysport, Xeomin, etc), to compare botulinum toxin with and without adjuvant solutions and to compare botulinum toxin to alternative surgical interventions in strabismus cases with and without potential for binocular vision.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 217 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 217 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 22 10%
Student > Bachelor 20 9%
Researcher 18 8%
Other 14 6%
Student > Doctoral Student 14 6%
Other 40 18%
Unknown 89 41%
Readers by discipline Count As %
Medicine and Dentistry 77 35%
Nursing and Health Professions 19 9%
Psychology 5 2%
Biochemistry, Genetics and Molecular Biology 4 2%
Agricultural and Biological Sciences 3 1%
Other 13 6%
Unknown 96 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 35. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 February 2023.
All research outputs
#1,166,971
of 25,595,500 outputs
Outputs from Cochrane database of systematic reviews
#2,423
of 13,156 outputs
Outputs of similar age
#23,316
of 324,504 outputs
Outputs of similar age from Cochrane database of systematic reviews
#71
of 284 outputs
Altmetric has tracked 25,595,500 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,156 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 35.8. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,504 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 284 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.