↓ Skip to main content

Cochrane Database of Systematic Reviews

Exercise interventions for cerebral palsy

Overview of attention for article published in Cochrane database of systematic reviews, June 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (94th percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

policy
1 policy source
twitter
63 X users
facebook
4 Facebook pages
wikipedia
3 Wikipedia pages

Citations

dimensions_citation
148 Dimensions

Readers on

mendeley
1076 Mendeley
Title
Exercise interventions for cerebral palsy
Published in
Cochrane database of systematic reviews, June 2017
DOI 10.1002/14651858.cd011660.pub2
Pubmed ID
Authors

Jennifer M Ryan, Elizabeth E Cassidy, Stephen G Noorduyn, Neil E O'Connell

Abstract

Cerebral palsy (CP) is a neurodevelopmental disorder resulting from an injury to the developing brain. It is the most common form of childhood disability with prevalence rates of between 1.5 and 3.8 per 1000 births reported worldwide. The primary impairments associated with CP include reduced muscle strength and reduced cardiorespiratory fitness, resulting in difficulties performing activities such as dressing, walking and negotiating stairs.Exercise is defined as a planned, structured and repetitive activity that aims to improve fitness, and it is a commonly used intervention for people with CP. Aerobic and resistance training may improve activity (i.e. the ability to execute a task) and participation (i.e. involvement in a life situation) through their impact on the primary impairments of CP. However, to date, there has been no comprehensive review of exercise interventions for people with CP. To assess the effects of exercise interventions in people with CP, primarily in terms of activity, participation and quality of life. Secondary outcomes assessed body functions and body structures. Comparators of interest were no treatment, usual care or an alternative type of exercise intervention. In June 2016 we searched CENTRAL, MEDLINE, Embase, nine other databases and four trials registers. We included randomised controlled trials (RCTs) and quasi-RCTs of children, adolescents and adults with CP. We included studies of aerobic exercise, resistance training, and 'mixed training' (a combination of at least two of aerobic exercise, resistance training and anaerobic training). Two review authors independently screened titles, abstracts and potentially relevant full-text reports for eligibility; extracted all relevant data and conducted 'Risk of bias' and GRADE assessments. We included 29 trials (926 participants); 27 included children and adolescents up to the age of 19 years, three included adolescents and young adults (10 to 22 years), and one included adults over 20 years. Males constituted 53% of the sample. Five trials were conducted in the USA; four in Australia; two in Egypt, Korea, Saudi Arabia, Taiwan, the Netherlands, and the UK; three in Greece; and one apiece in India, Italy, Norway, and South Africa.Twenty-six trials included people with spastic CP only; three trials included children and adolescents with spastic and other types of CP. Twenty-one trials included people who were able to walk with or without assistive devices, four trials also included people who used wheeled mobility devices in most settings, and one trial included people who used wheeled mobility devices only. Three trials did not report the functional ability of participants. Only two trials reported participants' manual ability. Eight studies compared aerobic exercise to usual care, while 15 compared resistance training and 4 compared mixed training to usual care or no treatment. Two trials compared aerobic exercise to resistance training. We judged all trials to be at high risk of bias overall.We found low-quality evidence that aerobic exercise improves gross motor function in the short term (standardised mean difference (SMD) 0.53, 95% confidence interval (CI) 0.02 to 1.04, N = 65, 3 studies) and intermediate term (mean difference (MD) 12.96%, 95% CI 0.52% to 25.40%, N = 12, 1 study). Aerobic exercise does not improve gait speed in the short term (MD 0.09 m/s, 95% CI -0.11 m/s to 0.28 m/s, N = 82, 4 studies, very low-quality evidence) or intermediate term (MD -0.17 m/s, 95% CI -0.59 m/s to 0.24 m/s, N = 12, 1 study, low-quality evidence). No trial assessed participation or quality of life following aerobic exercise.We found low-quality evidence that resistance training does not improve gross motor function (SMD 0.12, 95% CI -0.19 to 0.43, N = 164, 7 studies), gait speed (MD 0.03 m/s, 95% CI -0.02 m/s to 0.07 m/s, N = 185, 8 studies), participation (SMD 0.34, 95% CI -0.01 to 0.70, N = 127, 2 studies) or parent-reported quality of life (MD 12.70, 95% CI -5.63 to 31.03, n = 12, 1 study) in the short term. There is also low-quality evidence that resistance training does not improve gait speed (MD -0.03 m/s, 95% CI -0.17 m/s to 0.11 m/s, N = 84, 3 studies), gross motor function (SMD 0.13, 95% CI -0.30 to 0.55, N = 85, 3 studies) or participation (MD 0.37, 95% CI -6.61 to 7.35, N = 36, 1 study) in the intermediate term.We found low-quality evidence that mixed training does not improve gross motor function (SMD 0.02, 95% CI -0.29 to 0.33, N = 163, 4 studies) or gait speed (MD 0.10 m/s, -0.07 m/s to 0.27 m/s, N = 58, 1 study) but does improve participation (MD 0.40, 95% CI 0.13 to 0.67, N = 65, 1 study) in the short-term.There is no difference between resistance training and aerobic exercise in terms of the effect on gross motor function in the short term (SMD 0.02, 95% CI -0.50 to 0.55, N = 56, 2 studies, low-quality evidence).Thirteen trials did not report adverse events, seven reported no adverse events, and nine reported non-serious adverse events. The quality of evidence for all conclusions is low to very low. As included trials have small sample sizes, heterogeneity may be underestimated, resulting in considerable uncertainty relating to effect estimates. For children with CP, there is evidence that aerobic exercise may result in a small improvement in gross motor function, though it does not improve gait speed. There is evidence that resistance training does not improve gait speed, gross motor function, participation or quality of life among children with CP.Based on the evidence available, exercise appears to be safe for people with CP; only 55% of trials, however, reported adverse events or stated that they monitored adverse events. There is a need for large, high-quality, well-reported RCTs that assess the effectiveness of exercise in terms of activity and participation, before drawing any firm conclusions on the effectiveness of exercise for people with CP. Research is also required to determine if current exercise guidelines for the general population are effective and feasible for people with CP.

X Demographics

X Demographics

The data shown below were collected from the profiles of 63 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 1,076 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 1076 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 148 14%
Student > Bachelor 131 12%
Researcher 90 8%
Student > Ph. D. Student 76 7%
Student > Doctoral Student 48 4%
Other 185 17%
Unknown 398 37%
Readers by discipline Count As %
Nursing and Health Professions 199 18%
Medicine and Dentistry 161 15%
Sports and Recreations 45 4%
Psychology 35 3%
Social Sciences 33 3%
Other 152 14%
Unknown 451 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 47. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 November 2022.
All research outputs
#907,394
of 25,595,500 outputs
Outputs from Cochrane database of systematic reviews
#1,770
of 13,156 outputs
Outputs of similar age
#18,561
of 332,309 outputs
Outputs of similar age from Cochrane database of systematic reviews
#49
of 252 outputs
Altmetric has tracked 25,595,500 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,156 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 35.8. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,309 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 94% of its contemporaries.
We're also able to compare this research output to 252 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.