↓ Skip to main content

Cochrane Database of Systematic Reviews

Vitamin D supplementation for chronic liver diseases in adults

Overview of attention for article published in Cochrane database of systematic reviews, November 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
21 tweeters
facebook
4 Facebook pages

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
159 Mendeley
Title
Vitamin D supplementation for chronic liver diseases in adults
Published in
Cochrane database of systematic reviews, November 2017
DOI 10.1002/14651858.cd011564.pub2
Pubmed ID
Authors

Goran Bjelakovic, Dimitrinka Nikolova, Marko Bjelakovic, Christian Gluud

Abstract

Vitamin D deficiency is often reported in people with chronic liver diseases. Therefore, improving vitamin D status could have a beneficial effect on people with chronic liver diseases. To assess the beneficial and harmful effects of vitamin D supplementation in people with chronic liver diseases. We searched The Cochrane Hepato-Biliary Group Controlled Trials Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Science Citation Index Expanded, and Conference Proceedings Citation Index - Science. We also searched databases of ongoing trials and the World Health Organization International Clinical Trials Registry Platform. We scanned bibliographies of relevant publications and asked experts and pharmaceutical companies for additional trials. All searches were up to January 2017. Randomised clinical trials that compared vitamin D at any dose, duration, and route of administration versus placebo or no intervention in adults with chronic liver diseases. Vitamin D could have been administered as supplemental vitamin D (vitamin D3 (cholecalciferol) or vitamin D2 (ergocalciferol)), or an active form of vitamin D (1α-hydroxyvitamin D (alfacalcidol), 25-hydroxyvitamin D (calcidiol), or 1,25-dihydroxyvitamin D (calcitriol)). We used standard methodological procedures expected by The Cochrane Collaboration. We contacted authors of the trials to ask for missing information. We conducted random-effects and fixed-effect meta-analyses. For dichotomous outcomes, we calculated risk ratios (RRs), and for continuous outcomes, we calculated mean differences (MD), both with 95% confidence intervals (CI) and Trial Sequential Analyses-adjusted CIs. We calculated Peto odds ratio (OR) for rare events. We considered risk of bias in domains to assess the risk of systematic errors. We conducted Trial Sequential Analyses to control the risk of random errors. We assessed the quality of the evidence with GRADE. We included 15 randomised clinical trials with 1034 participants randomised. All trials had a parallel group design. Nine trials were conducted in high-income countries and six trials in middle-income countries. All trials were at high risk of bias. Six trials included participants with chronic hepatitis C, four trials included participants with liver cirrhosis, four trials included participants with non-alcoholic fatty liver disease, and one trial included liver transplant recipients. All included trials reported the baseline vitamin D status of participants. Participants in six trials had baseline 25-hydroxyvitamin D levels at or above vitamin D adequacy (20 ng/mL), while participants in the remaining nine trials were vitamin D insufficient (less than 20 ng/mL). All trials administered vitamin D orally. Mean duration of vitamin D supplementation was 0.5 years and follow-up was 0.6 years. Eleven trials (831 participants; 40% women; mean age 52 years) tested vitamin D3, one trial (18 men; mean age 61 years) with three intervention groups tested vitamin D2 and 25-dihydroxyvitamin D in separate groups, and three trials (185 participants; 55% women; mean age 55 years) tested 1,25-dihydroxyvitamin D. Seven trials used placebo, and eight trials used no intervention in the control group.The effect of vitamin D on all-cause mortality at the end of follow-up is uncertain because the results were imprecise (Peto OR 0.70, 95% CI 0.09 to 5.38; I(2) = 32%; 15 trials; 1034 participants; very low quality evidence). Trial Sequential Analysis on all-cause mortality was performed based on a mortality rate in the control group of 10%, a relative risk reduction of 28% in the experimental intervention group, a type I error of 2.5%, and type II error of 10% (90% power). There was no diversity. The required information size was 6396 participants. The cumulative Z-curve did not cross the trial sequential monitoring boundary for benefit or harm after the 15th trial, and the Trial Sequential Analyses-adjusted CI was 0.00 to 2534.The effect of vitamin D on liver-related mortality (RR 1.62, 95% CI 0.08 to 34.66; 1 trial; 18 participants) and on serious adverse events such as hypercalcaemia (RR 5.00, 95% CI 0.25 to 100.8; 1 trial; 76 participants), myocardial infarction (RR 0.75, 95% CI 0.08 to 6.81; 2 trials; 86 participants), and thyroiditis (RR 0.33 95% CI 0.01 to 7.91; 1 trial; 68 participants) is uncertain because the results were imprecise. The evidence on all these outcomes is of very low quality. The effect of vitamin D3 on non-serious adverse events such as glossitis (RR 3.70, 95% CI 0.16 to 87.6; 1 trial; 65 participants; very low quality of evidence) is uncertain because the result was imprecise.Due to few data, we did not conduct Trial Sequential Analysis on liver-related mortality, and serious and non-serious adverse events.We found no data on liver-related morbidity and health-related quality of life in the randomised trials included in this review. We are uncertain as to whether vitamin D supplements in the form of vitamin D3, vitamin D2, 1,25-dihydroxyvitamin D, or 25-dihydroxyvitamin D have important effect on all-cause mortality, liver-related mortality, or on serious or non-serious adverse events because the results were imprecise. There is no evidence on the effect of vitamin D supplementation on liver-related morbidity and health-related quality of life. Our conclusions are based on few trials with an insufficient number of participants and on lack of data on clinically important outcomes. In addition, the analysed trials are at high risk of bias with significant intertrial heterogeneity. The overall quality of evidence is very low.

Twitter Demographics

The data shown below were collected from the profiles of 21 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 159 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 159 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 28 18%
Student > Bachelor 18 11%
Student > Postgraduate 14 9%
Other 14 9%
Researcher 12 8%
Other 32 20%
Unknown 41 26%
Readers by discipline Count As %
Medicine and Dentistry 53 33%
Nursing and Health Professions 17 11%
Biochemistry, Genetics and Molecular Biology 8 5%
Pharmacology, Toxicology and Pharmaceutical Science 7 4%
Psychology 7 4%
Other 16 10%
Unknown 51 32%

Attention Score in Context

This research output has an Altmetric Attention Score of 14. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 August 2020.
All research outputs
#1,565,244
of 16,730,735 outputs
Outputs from Cochrane database of systematic reviews
#3,986
of 11,580 outputs
Outputs of similar age
#46,352
of 326,559 outputs
Outputs of similar age from Cochrane database of systematic reviews
#112
of 251 outputs
Altmetric has tracked 16,730,735 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,580 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 24.4. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,559 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 251 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.