↓ Skip to main content

Cochrane Database of Systematic Reviews

Larvivorous fish for preventing malaria transmission

Overview of attention for article published in Cochrane database of systematic reviews, December 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

1 policy source
5 tweeters
2 Facebook pages
1 Wikipedia page


19 Dimensions

Readers on

165 Mendeley
Larvivorous fish for preventing malaria transmission
Published in
Cochrane database of systematic reviews, December 2017
DOI 10.1002/14651858.cd008090.pub3
Pubmed ID

Deirdre P Walshe, Paul Garner, Ahmed A Adeel, Graham H Pyke, Thomas R Burkot


Adult female Anopheles mosquitoes can transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization (WHO) includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. In the past, the Global Fund has financed larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policymakers may return to this option. Therefore, we assessed the evidence base for larvivorous fish programmes in malaria control. To evaluate whether introducing larvivorous fish to anopheline larval habitats impacts Plasmodium parasite transmission. We also sought to summarize studies that evaluated whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources. We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE (PubMed); Embase (Ovid); CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) up to 6 July 2017. We checked the reference lists of all studies identified by the search. We examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Also we contacted researchers in the field and the authors of studies that met the inclusion criteria for additional information regarding potential studies for inclusion and ongoing studies. This is an update of a Cochrane Review published in 2013. Randomized controlled trials (RCTs) and non-RCTs, including controlled before-and-after studies, controlled time series, and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and reported on malaria in the community or the density of the adult anopheline population. In the absence of direct evidence of an effect on transmission, we performed a secondary analysis on studies that evaluated the effect of introducing larvivorous fish on the density or presence of immature anopheline mosquitoes (larvae and pupae forms) in water sources to determine whether this intervention has any potential that may justify further research in the control of malaria vectors. Two review authors independently screened each article by title and abstract, and examined potentially relevant studies for inclusion using an eligibility form. At least two review authors independently extracted data and assessed risk of bias of included studies. If relevant data were unclear or were not reported, we contacted the study authors for clarification. We presented data in tables, and we summarized studies that evaluated the effects of introducing fish on anopheline immature density or presence, or both. We used the GRADE approach to summarize the certainty of the evidence. We also examined whether the included studies reported any possible adverse impact of introducing larvivorous fish on non-target native species. We identified no studies that reported the effects of introducing larvivorous fish on the primary outcomes of this review: malaria infection in nearby communities, entomological inoculation rate, or on adult Anopheles density.For the secondary analysis, we examined the effects of introducing larvivorous fish on the density and presence of anopheline larvae and pupae in community water sources, and found 15 small studies with a follow-up period between 22 days and five years. These studies were undertaken in Sri Lanka (two studies), India (three studies), Ethiopia (one study), Kenya (two studies), Sudan (one study), Grande Comore Island (one study), Korea (two studies), Indonesia (one study), and Tajikistan (two studies). These studies were conducted in a variety of settings, including localized water bodies (such as wells, domestic water containers, fishponds, and pools (seven studies); riverbed pools below dams (two studies)); rice field plots (five studies); and water canals (two studies). All included studies were at high risk of bias. The research was insufficient to determine whether larvivorous fish reduce the density of Anopheles larvae and pupae (12 studies, unpooled data, very low certainty evidence). Some studies with high stocking levels of fish seemed to arrest the increase in immature anopheline populations, or to reduce the number of immature anopheline mosquitoes, compared with controls. However, this finding was not consistent, and in studies that showed a decrease in immature anopheline populations, the effect was not always consistently sustained. In contrast, some studies reported larvivorous fish reduced the number of water sources withAnopheles larvae and pupae (five studies, unpooled data, low certainty evidence).None of the included studies reported effects of larvivorous fish on local native fish populations or other species. We do not know whether introducing larvivorous fish reduces malaria transmission or the density of adult anopheline mosquito populations.In research studies that examined the effects on immature anopheline stages of introducing fish to potential malaria vector larval habitats, high stocking levels of fish may reduce the density or presence of immature anopheline mosquitoes in the short term. We do not know whether this translates into impact on malaria transmission. Our interpretation of the current evidence is that countries should not invest in fish stocking as a stand alone or supplementary larval control measure in any malaria transmission areas outside the context of research using carefully controlled field studies or quasi-experimental designs. Such research should examine the effects on native fish and other non-target species.

Twitter Demographics

The data shown below were collected from the profiles of 5 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 165 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Unknown 164 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 29 18%
Student > Master 28 17%
Student > Bachelor 17 10%
Researcher 17 10%
Student > Doctoral Student 8 5%
Other 21 13%
Unknown 45 27%
Readers by discipline Count As %
Medicine and Dentistry 35 21%
Agricultural and Biological Sciences 14 8%
Social Sciences 11 7%
Nursing and Health Professions 10 6%
Environmental Science 7 4%
Other 39 24%
Unknown 49 30%

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 January 2021.
All research outputs
of 18,057,469 outputs
Outputs from Cochrane database of systematic reviews
of 11,815 outputs
Outputs of similar age
of 420,117 outputs
Outputs of similar age from Cochrane database of systematic reviews
of 237 outputs
Altmetric has tracked 18,057,469 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,815 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.4. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,117 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 237 others from the same source and published within six weeks on either side of this one. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.