↓ Skip to main content

Cochrane Database of Systematic Reviews

Drug management for acute tonic-clonic convulsions including convulsive status epilepticus in children

Overview of attention for article published in Cochrane database of systematic reviews, January 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (95th percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

3 blogs
37 tweeters
1 Facebook page
5 Wikipedia pages


80 Dimensions

Readers on

378 Mendeley
Drug management for acute tonic-clonic convulsions including convulsive status epilepticus in children
Published in
Cochrane database of systematic reviews, January 2018
DOI 10.1002/14651858.cd001905.pub3
Pubmed ID

Amy McTague, Timothy Martland, Richard Appleton


Tonic-clonic convulsions and convulsive status epilepticus (currently defined as a tonic-clonic convulsion lasting at least 30 minutes) are medical emergencies and require urgent and appropriate anticonvulsant treatment. International consensus is that an anticonvulsant drug should be administered for any tonic-clonic convulsion that has been continuing for at least five minutes. Benzodiazepines (diazepam, lorazepam, midazolam) are traditionally regarded as first-line drugs and phenobarbital, phenytoin and paraldehyde as second-line drugs. This is an update of a Cochrane Review first published in 2002 and updated in 2008. To evaluate the effectiveness and safety of anticonvulsant drugs used to treat any acute tonic-clonic convulsion of any duration, including established convulsive (tonic-clonic) status epilepticus in children who present to a hospital or emergency medical department. For the latest update we searched the Cochrane Epilepsy Group's Specialised Register (23 May 2017), the Cochrane Central Register of Controlled Trials (CENTRAL) via the Cochrane Register of Studies Online (CRSO, 23 May 2017), MEDLINE (Ovid, 1946 to 23 May 2017), ClinicalTrials.gov (23 May 2017), and the WHO International Clinical Trials Registry Platform (ICTRP, 23 May 2017). Randomised and quasi-randomised trials comparing any anticonvulsant drugs used for the treatment of an acute tonic-clonic convulsion including convulsive status epilepticus in children. Two review authors independently assessed trials for inclusion and extracted data. We contacted study authors for additional information. The review includes 18 randomised trials involving 2199 participants, and a range of drug treatment options, doses and routes of administration (rectal, buccal, nasal, intramuscular and intravenous). The studies vary by design, setting and population, both in terms of their ages and also in their clinical situation. We have made many comparisons of drugs and of routes of administration of drugs in this review; our key findings are as follows:(1) This review provides only low- to very low-quality evidence comparing buccal midazolam with rectal diazepam for the treatment of acute tonic-clonic convulsions (risk ratio (RR) for seizure cessation 1.25, 95% confidence interval (CI) 1.13 to 1.38; 4 trials; 690 children). However, there is uncertainty about the effect and therefore insufficient evidence to support its use. There were no included studies which compare intranasal and buccal midazolam.(2) Buccal and intranasal anticonvulsants were shown to lead to similar rates of seizure cessation as intravenous anticonvulsants, e.g. intranasal lorazepam appears to be as effective as intravenous lorazepam (RR 0.96, 95% CI 0.82 to 1.13; 1 trial; 141 children; high-quality evidence) and intranasal midazolam was equivalent to intravenous diazepam (RR 0.98, 95% CI 0.91 to 1.06; 2 trials; 122 children; moderate-quality evidence).(3) Intramuscular midazolam also showed a similar rate of seizure cessation to intravenous diazepam (RR 0.97, 95% CI 0.87 to 1.09; 2 trials; 105 children; low-quality evidence).(4) For intravenous routes of administration, lorazepam appears to be as effective as diazepam in stopping acute tonic clonic convulsions: RR 1.04, 95% CI 0.94 to 1.16; 3 trials; 414 children; low-quality evidence. Furthermore, we found no statistically significant or clinically important differences between intravenous midazolam and diazepam (RR for seizure cessation 1.08, 95% CI 0.97 to 1.21; 1 trial; 80 children; moderate-quality evidence) or intravenous midazolam and lorazepam (RR for seizure cessation 0.98, 95% CI 0.91 to 1.04; 1 trial; 80 children; moderate-quality evidence). In general, intravenously-administered anticonvulsants led to more rapid seizure cessation but this was usually compromised by the time taken to establish intravenous access.(5) There is limited evidence from a single trial to suggest that intranasal lorazepam may be more effective than intramuscular paraldehyde in stopping acute tonic-clonic convulsions (RR 1.22, 95% CI 0.99 to 1.52; 160 children; moderate-quality evidence).(6) Adverse side effects were observed and reported very infrequently in the included studies. Respiratory depression was the most common and most clinically relevant side effect and, where reported, the frequency of this adverse event was observed in 0% to up to 18% of children. None of the studies individually demonstrated any difference in the rates of respiratory depression between the different anticonvulsants or their different routes of administration; but when pooled, three studies (439 children) provided moderate-quality evidence that lorazepam was significantly associated with fewer occurrences of respiratory depression than diazepam (RR 0.72, 95% CI 0.55 to 0.93).Much of the evidence provided in this review is of mostly moderate to high quality. However, the quality of the evidence provided for some important outcomes is low to very low, particularly for comparisons of non-intravenous routes of drug administration. Low- to very low-quality evidence was provided where limited data and imprecise results were available for analysis, methodological inadequacies were present in some studies which may have introduced bias into the results, study settings were not applicable to wider clinical practice, and where inconsistency was present in some pooled analyses. We have not identified any new high-quality evidence on the efficacy or safety of an anticonvulsant in stopping an acute tonic-clonic convulsion that would inform clinical practice. There appears to be a very low risk of adverse events, specifically respiratory depression. Intravenous lorazepam and diazepam appear to be associated with similar rates of seizure cessation and respiratory depression. Although intravenous lorazepam and intravenous diazepam lead to more rapid seizure cessation, the time taken to obtain intravenous access may undermine this effect. In the absence of intravenous access, buccal midazolam or rectal diazepam are therefore acceptable first-line anticonvulsants for the treatment of an acute tonic-clonic convulsion that has lasted at least five minutes. There is no evidence provided by this review to support the use of intranasal midazolam or lorazepam as alternatives to buccal midazolam or rectal diazepam.

Twitter Demographics

Twitter Demographics

The data shown below were collected from the profiles of 37 tweeters who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 378 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 <1%
Unknown 377 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 60 16%
Student > Bachelor 53 14%
Researcher 35 9%
Other 31 8%
Student > Postgraduate 26 7%
Other 61 16%
Unknown 112 30%
Readers by discipline Count As %
Medicine and Dentistry 122 32%
Nursing and Health Professions 34 9%
Pharmacology, Toxicology and Pharmaceutical Science 24 6%
Social Sciences 12 3%
Neuroscience 12 3%
Other 43 11%
Unknown 131 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 43. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 March 2023.
All research outputs
of 24,356,663 outputs
Outputs from Cochrane database of systematic reviews
of 12,900 outputs
Outputs of similar age
of 451,970 outputs
Outputs of similar age from Cochrane database of systematic reviews
of 222 outputs
Altmetric has tracked 24,356,663 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,900 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 34.2. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 451,970 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 95% of its contemporaries.
We're also able to compare this research output to 222 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.