↓ Skip to main content

Cochrane Database of Systematic Reviews

Intraoperative imaging technology to maximise extent of resection for glioma

Overview of attention for article published in Cochrane database of systematic reviews, January 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (71st percentile)

Mentioned by

twitter
9 X users
facebook
1 Facebook page

Citations

dimensions_citation
127 Dimensions

Readers on

mendeley
317 Mendeley
Title
Intraoperative imaging technology to maximise extent of resection for glioma
Published in
Cochrane database of systematic reviews, January 2018
DOI 10.1002/14651858.cd012788.pub2
Pubmed ID
Authors

Michael D Jenkinson, Damiano Giuseppe Barone, Andrew Bryant, Luke Vale, Helen Bulbeck, Theresa A Lawrie, Michael G Hart, Colin Watts

Abstract

Extent of resection is considered to be a prognostic factor in neuro-oncology. Intraoperative imaging technologies are designed to help achieve this goal. It is not clear whether any of these sometimes very expensive tools (or their combination) should be recommended as standard care for people with brain tumours. We set out to determine if intraoperative imaging technology offers any advantage in terms of extent of resection over standard surgery and if any one technology was more effective than another. To establish the overall effectiveness and safety of intraoperative imaging technology in resection of glioma. To supplement this review of effects, we also wished to identify cost analyses and economic evaluations as part of a Brief Economic Commentary (BEC). We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 7, 2017), MEDLINE (1946 to June, week 4, 2017), and Embase (1980 to 2017, week 27). We searched the reference lists of all identified studies. We handsearched two journals, the Journal of Neuro-Oncology and Neuro-oncology, from 1991 to 2017, including all conference abstracts. We contacted neuro-oncologists, trial authors, and manufacturers regarding ongoing and unpublished trials. Randomised controlled trials evaluating people of all ages with presumed new or recurrent glial tumours (of any location or histology) from clinical examination and imaging (computed tomography (CT) or magnetic resonance imaging (MRI), or both). Additional imaging modalities (e.g. positron emission tomography, magnetic resonance spectroscopy) were not mandatory. Interventions included intraoperative MRI (iMRI), fluorescence-guided surgery, ultrasound, and neuronavigation (with or without additional image processing, e.g. tractography). Two review authors independently assessed the search results for relevance, undertook critical appraisal according to known guidelines, and extracted data using a prespecified pro forma. We identified four randomised controlled trials, using different intraoperative imaging technologies: iMRI (2 trials including 58 and 14 participants, respectively); fluorescence-guided surgery with 5-aminolevulinic acid (5-ALA) (1 trial, 322 participants); and neuronavigation (1 trial, 45 participants). We identified one ongoing trial assessing iMRI with a planned sample size of 304 participants for which results are expected to be published around autumn 2018. We identified no trials for ultrasound.Meta-analysis was not appropriate due to differences in the tumours included (eloquent versus non-eloquent locations) and variations in the image guidance tools used in the control arms (usually selective utilisation of neuronavigation). There were significant concerns regarding risk of bias in all the included studies. All studies included people with high-grade glioma only.Extent of resection was increased in one trial of iMRI (risk ratio (RR) of incomplete resection 0.13, 95% confidence interval (CI) 0.02 to 0.96; 1 study, 49 participants; very low-quality evidence) and in the trial of 5-ALA (RR of incomplete resection 0.55, 95% CI 0.42 to 0.71; 1 study, 270 participants; low-quality evidence). The other trial assessing iMRI was stopped early after an unplanned interim analysis including 14 participants, therefore the trial provides very low-quality evidence. The trial of neuronavigation provided insufficient data to evaluate the effects on extent of resection.Reporting of adverse events was incomplete and suggestive of significant reporting bias (very low-quality evidence). Overall, reported events were low in most trials. There was no clear evidence of improvement in overall survival with 5-ALA (hazard ratio 0.83, 95% CI 0.62 to 1.07; 1 study, 270 participants; low-quality evidence). Progression-free survival data were not available in an appropriate format for analysis. Data for quality of life were only available for one study and suffered from significant attrition bias (very low-quality evidence). Intra-operative imaging technologies, specifically iMRI and 5-ALA, may be of benefit in maximising extent of resection in participants with high grade glioma. However, this is based on low to very low quality evidence, and is therefore very uncertain. The short- and long-term neurological effects are uncertain. Effects of image-guided surgery on overall survival, progression-free survival, and quality of life are unclear. A brief economic commentary found limited economic evidence for the equivocal use of iMRI compared with conventional surgery. In terms of costs, a non-systematic review of economic studies suggested that compared with standard surgery use of image-guided surgery has an uncertain effect on costs and that 5-aminolevulinic acid was more costly. Further research, including studies of ultrasound-guided surgery, is needed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 317 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 317 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 41 13%
Student > Bachelor 32 10%
Student > Ph. D. Student 30 9%
Researcher 29 9%
Other 24 8%
Other 47 15%
Unknown 114 36%
Readers by discipline Count As %
Medicine and Dentistry 102 32%
Neuroscience 18 6%
Nursing and Health Professions 17 5%
Engineering 11 3%
Biochemistry, Genetics and Molecular Biology 8 3%
Other 33 10%
Unknown 128 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 February 2020.
All research outputs
#6,784,032
of 25,461,852 outputs
Outputs from Cochrane database of systematic reviews
#8,031
of 12,090 outputs
Outputs of similar age
#127,582
of 450,840 outputs
Outputs of similar age from Cochrane database of systematic reviews
#136
of 168 outputs
Altmetric has tracked 25,461,852 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 12,090 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 38.2. This one is in the 32nd percentile – i.e., 32% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 450,840 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 168 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.