↓ Skip to main content

Cochrane Database of Systematic Reviews

Vaccines for preventing influenza in the elderly

Overview of attention for article published in Cochrane database of systematic reviews, February 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (99th percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Citations

dimensions_citation
189 Dimensions

Readers on

mendeley
495 Mendeley
citeulike
1 CiteULike
Title
Vaccines for preventing influenza in the elderly
Published in
Cochrane database of systematic reviews, February 2018
DOI 10.1002/14651858.cd004876.pub4
Pubmed ID
Authors

Vittorio Demicheli, Tom Jefferson, Carlo Di Pietrantonj, Eliana Ferroni, Sarah Thorning, Roger E Thomas, Alessandro Rivetti

Abstract

The consequences of influenza in the elderly (those age 65 years or older) are complications, hospitalisations, and death. The primary goal of influenza vaccination in the elderly is to reduce the risk of death among people who are most vulnerable. This is an update of a review published in 2010. Future updates of this review will be made only when new trials or vaccines become available. Observational data included in previous versions of the review have been retained for historical reasons but have not been updated because of their lack of influence on the review conclusions. To assess the effects (efficacy, effectiveness, and harm) of vaccines against influenza in the elderly. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 11), which includes the Cochrane Acute Respiratory Infections Group's Specialised Register; MEDLINE (1966 to 31 December 2016); Embase (1974 to 31 December 2016); Web of Science (1974 to 31 December 2016); CINAHL (1981 to 31 December 2016); LILACS (1982 to 31 December 2016); WHO International Clinical Trials Registry Platform (ICTRP; 1 July 2017); and ClinicalTrials.gov (1 July 2017). Randomised controlled trials (RCTs) and quasi-RCTs assessing efficacy against influenza (laboratory-confirmed cases) or effectiveness against influenza-like illness (ILI) or safety. We considered any influenza vaccine given independently, in any dose, preparation, or time schedule, compared with placebo or with no intervention. Previous versions of this review included 67 cohort and case-control studies. The searches for these trial designs are no longer updated. Review authors independently assessed risk of bias and extracted data. We rated the certainty of evidence with GRADE for the key outcomes of influenza, ILI, complications (hospitalisation, pneumonia), and adverse events. We have presented aggregate control group risks to illustrate the effect in absolute terms. We used them as the basis for calculating the number needed to vaccinate to prevent one case of each event for influenza and ILI outcomes. We identified eight RCTs (over 5000 participants), of which four assessed harms. The studies were conducted in community and residential care settings in Europe and the USA between 1965 and 2000. Risk of bias reduced our certainty in the findings for influenza and ILI, but not for other outcomes.Older adults receiving the influenza vaccine may experience less influenza over a single season compared with placebo, from 6% to 2.4% (risk ratio (RR) 0.42, 95% confidence interval (CI) 0.27 to 0.66; low-certainty evidence). We rated the evidence as low certainty due to uncertainty over how influenza was diagnosed. Older adults probably experience less ILI compared with those who do not receive a vaccination over the course of a single influenza season (3.5% versus 6%; RR 0.59, 95% CI 0.47 to 0.73; moderate-certainty evidence). These results indicate that 30 people would need to be vaccinated to prevent one person experiencing influenza, and 42 would need to be vaccinated to prevent one person having an ILI.The study providing data for mortality and pneumonia was underpowered to detect differences in these outcomes. There were 3 deaths from 522 participants in the vaccination arm and 1 death from 177 participants in the placebo arm, providing very low-certainty evidence for the effect on mortality (RR 1.02, 95% CI 0.11 to 9.72). No cases of pneumonia occurred in one study that reported this outcome (very low-certainty evidence). No data on hospitalisations were reported. Confidence intervaIs around the effect of vaccines on fever and nausea were wide, and we do not have enough information about these harms in older people (fever: 1.6% with placebo compared with 2.5% after vaccination (RR 1.57, 0.92 to 2.71; moderate-certainty evidence)); nausea (2.4% with placebo compared with 4.2% after vaccination (RR 1.75, 95% CI 0.74 to 4.12; low-certainty evidence)). Older adults receiving the influenza vaccine may have a lower risk of influenza (from 6% to 2.4%), and probably have a lower risk of ILI compared with those who do not receive a vaccination over the course of a single influenza season (from 6% to 3.5%). We are uncertain how big a difference these vaccines will make across different seasons. Very few deaths occurred, and no data on hospitalisation were reported. No cases of pneumonia occurred in one study that reported this outcome. We do not have enough information to assess harms relating to fever and nausea in this population.The evidence for a lower risk of influenza and ILI with vaccination is limited by biases in the design or conduct of the studies. Lack of detail regarding the methods used to confirm the diagnosis of influenza limits the applicability of this result. The available evidence relating to complications is of poor quality, insufficient, or old and provides no clear guidance for public health regarding the safety, efficacy, or effectiveness of influenza vaccines for people aged 65 years or older. Society should invest in research on a new generation of influenza vaccines for the elderly.

Twitter Demographics

Twitter Demographics

The data shown below were collected from the profiles of 372 tweeters who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 495 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 <1%
Unknown 494 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 64 13%
Student > Ph. D. Student 49 10%
Student > Bachelor 46 9%
Researcher 45 9%
Other 42 8%
Other 77 16%
Unknown 172 35%
Readers by discipline Count As %
Medicine and Dentistry 144 29%
Nursing and Health Professions 47 9%
Biochemistry, Genetics and Molecular Biology 21 4%
Pharmacology, Toxicology and Pharmaceutical Science 20 4%
Agricultural and Biological Sciences 13 3%
Other 55 11%
Unknown 195 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 316. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 September 2023.
All research outputs
#101,414
of 24,525,936 outputs
Outputs from Cochrane database of systematic reviews
#188
of 12,928 outputs
Outputs of similar age
#2,644
of 448,979 outputs
Outputs of similar age from Cochrane database of systematic reviews
#8
of 227 outputs
Altmetric has tracked 24,525,936 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,928 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 34.7. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 448,979 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 99% of its contemporaries.
We're also able to compare this research output to 227 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.