↓ Skip to main content

Cochrane Database of Systematic Reviews

Surgery for trigger finger

Overview of attention for article published in Cochrane database of systematic reviews, February 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

news
2 news outlets
twitter
7 tweeters
wikipedia
1 Wikipedia page

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
185 Mendeley
Title
Surgery for trigger finger
Published in
Cochrane database of systematic reviews, February 2018
DOI 10.1002/14651858.cd009860.pub2
Pubmed ID
Authors

Haroldo Junior Fiorini, Marcel Jun Tamaoki, Mário Lenza, Joao Baptista Gomes dos Santos, Flávio Faloppa, Joao carlos Belloti

Abstract

Trigger finger is a common clinical disorder, characterised by pain and catching as the patient flexes and extends digits because of disproportion between the diameter of flexor tendons and the A1 pulley. The treatment approach may include non-surgical or surgical treatments. Currently there is no consensus about the best surgical treatment approach (open, percutaneous or endoscopic approaches). To evaluate the effectiveness and safety of different methods of surgical treatment for trigger finger (open, percutaneous or endoscopic approaches) in adults at any stage of the disease. We searched CENTRAL, MEDLINE, Embase and LILACS up to August 2017. We included randomised or quasi-randomised controlled trials that assessed adults with trigger finger and compared any type of surgical treatment with each other or with any other non-surgical intervention. The major outcomes were the resolution of trigger finger, pain, hand function, participant-reported treatment success or satisfaction, recurrence of triggering, adverse events and neurovascular injury. Two review authors independently selected the trial reports, extracted the data and assessed the risk of bias. Measures of treatment effect for dichotomous outcomes calculated risk ratios (RRs), and mean differences (MDs) or standardised mean differences (SMD) for continuous outcomes, with 95% confidence intervals (CIs). When possible, the data were pooled into meta-analysis using the random-effects model. GRADE was used to assess the quality of evidence for each outcome. Fourteen trials were included, totalling 1260 participants, with 1361 trigger fingers. The age of participants included in the studies ranged from 16 to 88 years; and the majority of participants were women (approximately 70%). The average duration of symptoms ranged from three to 15 months, and the follow-up after the procedure ranged from eight weeks to 23 months.The studies reported nine types of comparisons: open surgery versus steroid injections (two studies); percutaneous surgery versus steroid injection (five studies); open surgery versus steroid injection plus ultrasound-guided hyaluronic acid injection (one study); percutaneous surgery plus steroid injection versus steroid injection (one study); percutaneous surgery versus open surgery (five studies); endoscopic surgery versus open surgery (one study); and three comparisons of types of incision for open surgery (transverse incision of the skin in the distal palmar crease, transverse incision of the skin about 2-3 mm distally from distal palmar crease, and longitudinal incision of the skin) (one study).Most studies had significant methodological flaws and were considered at high or unclear risk of selection bias, performance bias, detection bias and reporting bias. The primary comparison was open surgery versus steroid injections, because open surgery is the oldest and the most widely used treatment method and considered as standard surgery, whereas steroid injection is the least invasive control treatment method as reported in the studies in this review and is often used as first-line treatment in clinical practice.Compared with steroid injection, there was low-quality evidence that open surgery provides benefits with respect to less triggering recurrence, although it has the disadvantage of being more painful. Evidence was downgraded due to study design flaws and imprecision.Based on two trials (270 participants) from six up to 12 months, 50/130 (or 385 per 1000) individuals had recurrence of trigger finger in the steroid injection group compared with 8/140 (or 65 per 1000; range 35 to 127) in the open surgery group, RR 0.17 (95% CI 0.09 to 0.33), for an absolute risk difference that 29% fewer people had recurrence of symptoms with open surgery (60% fewer to 3% more individuals); relative change translates to improvement of 83% in the open surgery group (67% to 91% better).At one week, 9/49 (184 per 1000) people had pain on the palm of the hand in the steroid injection group compared with 38/56 (or 678 per 1000; ranging from 366 to 1000) in the open surgery group, RR 3.69 (95% CI 1.99 to 6.85), for an absolute risk difference that 49% more had pain with open surgery (33% to 66% more); relative change translates to worsening of 269% (585% to 99% worse) (one trial, 105 participants).Because of very low quality evidence from two trials we are uncertain whether open surgery improve resolution of trigger finger in the follow-up at six to 12 months, when compared with steroid injection (131/140 observed in the open surgery group compared with 80/130 in the control group; RR 1.48, 95% CI 0.79 to 2.76); evidence was downgraded due to study design flaws, inconsistency and imprecision. Low-quality evidence from two trials and few event rates (270 participants) from six up to 12 months of follow-up, we are uncertain whether open surgery increased the risk of adverse events (incidence of infection, tendon injury, flare, cutaneous discomfort and fat necrosis) (18/140 observed in the open surgery group compared with 17/130 in the control group; RR 1.02, 95% CI 0.57 to 1.84) and neurovascular injury (9/140 observed in the open surgery group compared with 4/130 in the control group; RR 2.17, 95% CI 0.7 to 6.77). Twelve participants (8 versus 4) did not complete the follow-up, and it was considered that they did not have a positive outcome in the data analysis. We are uncertain whether open surgery was more effective than steroid injection in improving hand function or participant satisfaction as studies did not report these outcomes. Low-quality evidence indicates that, compared with steroid injection, open surgical treatment in people with trigger finger, may result in a less recurrence rate from six up to 12 months following the treatment, although it increases the incidence of pain during the first follow-up week. We are uncertain about the effect of open surgery with regard to the resolution rate in follow-up at six to 12 months, compared with steroid injections, due high heterogeneity and few events occurred in the trials; we are uncertain too about the risk of adverse events and neurovascular injury because of a few events occurred in the studies. Hand function or participant satisfaction were not reported.

Twitter Demographics

The data shown below were collected from the profiles of 7 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 185 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 185 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 28 15%
Student > Master 27 15%
Other 18 10%
Student > Ph. D. Student 14 8%
Researcher 13 7%
Other 34 18%
Unknown 51 28%
Readers by discipline Count As %
Medicine and Dentistry 74 40%
Nursing and Health Professions 20 11%
Biochemistry, Genetics and Molecular Biology 5 3%
Psychology 5 3%
Environmental Science 3 2%
Other 15 8%
Unknown 63 34%

Attention Score in Context

This research output has an Altmetric Attention Score of 23. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 June 2022.
All research outputs
#1,283,251
of 21,680,385 outputs
Outputs from Cochrane database of systematic reviews
#3,008
of 12,100 outputs
Outputs of similar age
#29,841
of 294,679 outputs
Outputs of similar age from Cochrane database of systematic reviews
#79
of 216 outputs
Altmetric has tracked 21,680,385 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,100 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 29.4. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 294,679 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 216 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.