↓ Skip to main content

Cochrane Database of Systematic Reviews

Multifactorial and multiple component interventions for preventing falls in older people living in the community

Overview of attention for article published in Cochrane database of systematic reviews, July 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (97th percentile)
  • High Attention Score compared to outputs of the same age and source (95th percentile)

Mentioned by

news
5 news outlets
blogs
2 blogs
policy
2 policy sources
twitter
112 tweeters
facebook
3 Facebook pages

Citations

dimensions_citation
336 Dimensions

Readers on

mendeley
1076 Mendeley
Title
Multifactorial and multiple component interventions for preventing falls in older people living in the community
Published in
Cochrane database of systematic reviews, July 2018
DOI 10.1002/14651858.cd012221.pub2
Pubmed ID
Authors

Sally Hopewell, Olubusola Adedire, Bethan J Copsey, Graham J Boniface, Catherine Sherrington, Lindy Clemson, Jacqueline CT Close, Sarah E Lamb

Abstract

Falls and fall-related injuries are common, particularly in those aged over 65, with around one-third of older people living in the community falling at least once a year. Falls prevention interventions may comprise single component interventions (e.g. exercise), or involve combinations of two or more different types of intervention (e.g. exercise and medication review). Their delivery can broadly be divided into two main groups: 1) multifactorial interventions where component interventions differ based on individual assessment of risk; or 2) multiple component interventions where the same component interventions are provided to all people. To assess the effects (benefits and harms) of multifactorial interventions and multiple component interventions for preventing falls in older people living in the community. We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, the Cumulative Index to Nursing and Allied Health Literature, trial registers and reference lists. Date of search: 12 June 2017. Randomised controlled trials, individual or cluster, that evaluated the effects of multifactorial and multiple component interventions on falls in older people living in the community, compared with control (i.e. usual care (no change in usual activities) or attention control (social visits)) or exercise as a single intervention. Two review authors independently selected studies, assessed risks of bias and extracted data. We calculated the rate ratio (RaR) with 95% confidence intervals (CIs) for rate of falls. For dichotomous outcomes we used risk ratios (RRs) and 95% CIs. For continuous outcomes, we used the standardised mean difference (SMD) with 95% CIs. We pooled data using the random-effects model. We used the GRADE approach to assess the quality of the evidence. We included 62 trials involving 19,935 older people living in the community. The median trial size was 248 participants. Most trials included more women than men. The mean ages in trials ranged from 62 to 85 years (median 77 years). Most trials (43 trials) reported follow-up of 12 months or over. We assessed most trials at unclear or high risk of bias in one or more domains.Forty-four trials assessed multifactorial interventions and 18 assessed multiple component interventions. (I2 not reported if = 0%).Multifactorial interventions versus usual care or attention controlThis comparison was made in 43 trials. Commonly-applied or recommended interventions after assessment of each participant's risk profile were exercise, environment or assistive technologies, medication review and psychological interventions. Multifactorial interventions may reduce the rate of falls compared with control: rate ratio (RaR) 0.77, 95% CI 0.67 to 0.87; 19 trials; 5853 participants; I2 = 88%; low-quality evidence. Thus if 1000 people were followed over one year, the number of falls may be 1784 (95% CI 1553 to 2016) after multifactorial intervention versus 2317 after usual care or attention control. There was low-quality evidence of little or no difference in the risks of: falling (i.e. people sustaining one or more fall) (RR 0.96, 95% CI 0.90 to 1.03; 29 trials; 9637 participants; I2 = 60%); recurrent falls (RR 0.87, 95% CI 0.74 to 1.03; 12 trials; 3368 participants; I2 = 53%); fall-related hospital admission (RR 1.00, 95% CI 0.92 to 1.07; 15 trials; 5227 participants); requiring medical attention (RR 0.91, 95% CI 0.75 to 1.10; 8 trials; 3078 participants). There is low-quality evidence that multifactorial interventions may reduce the risk of fall-related fractures (RR 0.73, 95% CI 0.53 to 1.01; 9 trials; 2850 participants) and may slightly improve health-related quality of life but not noticeably (SMD 0.19, 95% CI 0.03 to 0.35; 9 trials; 2373 participants; I2 = 70%). Of three trials reporting on adverse events, one found none, and two reported 12 participants with self-limiting musculoskeletal symptoms in total.Multifactorial interventions versus exerciseVery low-quality evidence from one small trial of 51 recently-discharged orthopaedic patients means that we are uncertain of the effects on rate of falls or risk of falling of multifactorial interventions versus exercise alone. Other fall-related outcomes were not assessed.Multiple component interventions versus usual care or attention controlThe 17 trials that make this comparison usually included exercise and another component, commonly education or home-hazard assessment. There is moderate-quality evidence that multiple interventions probably reduce the rate of falls (RaR 0.74, 95% CI 0.60 to 0.91; 6 trials; 1085 participants; I2 = 45%) and risk of falls (RR 0.82, 95% CI 0.74 to 0.90; 11 trials; 1980 participants). There is low-quality evidence that multiple interventions may reduce the risk of recurrent falls, although a small increase cannot be ruled out (RR 0.81, 95% CI 0.63 to 1.05; 4 trials; 662 participants). Very low-quality evidence means that we are uncertain of the effects of multiple component interventions on the risk of fall-related fractures (2 trials) or fall-related hospital admission (1 trial). There is low-quality evidence that multiple interventions may have little or no effect on the risk of requiring medical attention (RR 0.95, 95% CI 0.67 to 1.35; 1 trial; 291 participants); conversely they may slightly improve health-related quality of life (SMD 0.77, 95% CI 0.16 to 1.39; 4 trials; 391 participants; I2 = 88%). Of seven trials reporting on adverse events, five found none, and six minor adverse events were reported in two.Multiple component interventions versus exerciseThis comparison was tested in five trials. There is low-quality evidence of little or no difference between the two interventions in rate of falls (1 trial) and risk of falling (RR 0.93, 95% CI 0.78 to 1.10; 3 trials; 863 participants) and very low-quality evidence, meaning we are uncertain of the effects on hospital admission (1 trial). One trial reported two cases of minor joint pain. Other falls outcomes were not reported. Multifactorial interventions may reduce the rate of falls compared with usual care or attention control. However, there may be little or no effect on other fall-related outcomes. Multiple component interventions, usually including exercise, may reduce the rate of falls and risk of falling compared with usual care or attention control.

Twitter Demographics

Twitter Demographics

The data shown below were collected from the profiles of 112 tweeters who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 1,076 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 1076 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 169 16%
Student > Bachelor 160 15%
Student > Ph. D. Student 90 8%
Researcher 76 7%
Student > Postgraduate 42 4%
Other 152 14%
Unknown 387 36%
Readers by discipline Count As %
Nursing and Health Professions 252 23%
Medicine and Dentistry 196 18%
Sports and Recreations 35 3%
Psychology 29 3%
Social Sciences 19 2%
Other 113 11%
Unknown 432 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 119. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 July 2023.
All research outputs
#330,322
of 24,406,441 outputs
Outputs from Cochrane database of systematic reviews
#563
of 12,907 outputs
Outputs of similar age
#7,475
of 333,861 outputs
Outputs of similar age from Cochrane database of systematic reviews
#11
of 209 outputs
Altmetric has tracked 24,406,441 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,907 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 34.4. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,861 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 209 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 95% of its contemporaries.