↓ Skip to main content

Cochrane Database of Systematic Reviews

Interventions for metabolic bone disease in children with chronic kidney disease

Overview of attention for article published in Cochrane database of systematic reviews, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
228 Mendeley
Title
Interventions for metabolic bone disease in children with chronic kidney disease
Published in
Cochrane database of systematic reviews, November 2015
DOI 10.1002/14651858.cd008327.pub2
Pubmed ID
Authors

Deirdre Hahn, Elisabeth M Hodson, Jonathan C Craig

Abstract

Bone disease is common in children with chronic kidney disease (CKD) and when untreated may result in bone deformities, bone pain, fractures and reduced growth rates. This is an update of a review first published in 2010. This review aimed to examine the benefits (improved growth rates, reduced risk of bone fractures and deformities, reduction in PTH levels) and harms (hypercalcaemia, blood vessel calcification, deterioration in kidney function) of interventions (including vitamin D preparations and phosphate binders) for the prevention and treatment of metabolic bone disease in children with CKD. We searched the Cochrane Kidney and Transplant Specialised Register to 8 September 2015 through contact with the Trial's Search Co-ordinator using search terms relevant for this review. We included randomised controlled trials (RCTs) comparing different interventions used to prevent or treat bone disease in children with CKD stages 2 to 5D. Data were assessed for study eligibility, risk of bias and extracted independently by two authors. Results were reported as risk ratios (RR) or risk differences (RD) with 95% confidence intervals (CI) for dichotomous outcomes. For continuous outcomes the mean difference (MD) or standardised mean difference (SMD) with 95% confidence intervals (CI) was used. Statistical analyses were performed using the random-effects model. This review included 18 studies (576 children); three new studies were added for this update. Adequate sequence generation and allocation concealment were reported in 12 and 11 studies respectively. Only four studies reported blinding of children, investigators or outcome assessors. Nine studies were at low risk of attrition bias and 12 studies were at low risk of selective reporting bias.Eight different interventions were compared. Two studies compared intraperitoneal (IP) with oral calcitriol. PTH levels were significantly lower with IP compared with oral calcitriol (1 study: MD -501.00 pg/mL, 95% CI -721.54 to -280.46) but the number of children with abnormal bone histology did not differ between treatments. Three studies compared intermittent with daily oral calcitriol. The change in mean height SDS (1 study: MD 0.13, 95% CI -0.22 to 0.48) and the percentage fall in parathyroid hormone (PTH) levels at eight weeks (1 study: MD -5.50%, 95% CI -32.37 to 21.37) and 12 months (1 study: MD -6.00% 95% CI -25.27 to 13.27) did not differ between treatments.Four studies compared active vitamin D preparations (calcitriol, paricalcitol, 1α-hydroxyvitamin D) with placebo or no specific treatment. One study reported vitamin D preparations significantly reduced PTH levels (-55.00 pmol/L, 95% CI -83.03 to -26.97). There was no significant difference in hypercalcaemia risk with vitamin D preparations compared with placebo or no specific treatment (4 studies, 103 children: RD 0.08 mg/dL, 95% CI -0.08 to 0.24). However, there was heterogeneity (I(2) = 55%) with one study showing a significantly greater risk of hypercalcaemia with intravenous (IV) calcitriol administration. Two studies (97 children) compared calcitriol with other vitamin D preparations and both found no significant differences in growth between preparations.Two studies compared ergocalciferol in patients with CKD and vitamin D deficiency. Elevated PTH levels developed significantly later in ergocalciferol treated children (1 study: hazard ratio 0.30, 95% CI 0.09 to 0.93) though the number with elevated PTH levels did not differ between groups (1 study, 40 children: RR 0.33, 95% CI 0.11 to 1.05).Two studies compared calcium carbonate with aluminium hydroxide as phosphate binders. One study (17 children: MD -0.86 SDS, 95% CI -2.24 to 0.52) reported no significant difference in mean final height SDS between treatments. Three studies compared sevelamer with calcium-containing phosphate binders. There were no significant differences in the final calcium, phosphorus or PTH levels between binders. More episodes of hypercalcaemia occurred with calcium-containing binders. One study reported no significant differences between calcitriol and doxercalciferol in bone histology or biochemical parameters. Bone disease, assessed by changes in PTH levels, is improved by all vitamin D preparations. However, no consistent differences between routes of administration, frequencies of dosing or vitamin D preparations were demonstrated. Although fewer episodes of high calcium levels occurred with the non-calcium-containing phosphate binder, sevelamer, compared with calcium-containing binders, there were no differences in serum phosphorus and calcium overall and phosphorus values were reduced to similar extents. All studies were small with few data available on patient-centred outcomes (growth, bone deformities) and limited data on biochemical parameters or bone histology resulting in considerable imprecision of results thus limiting the applicability to the care of children with CKD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 228 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 228 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 41 18%
Student > Bachelor 30 13%
Researcher 23 10%
Other 14 6%
Student > Ph. D. Student 14 6%
Other 35 15%
Unknown 71 31%
Readers by discipline Count As %
Medicine and Dentistry 83 36%
Nursing and Health Professions 25 11%
Biochemistry, Genetics and Molecular Biology 7 3%
Pharmacology, Toxicology and Pharmaceutical Science 7 3%
Social Sciences 5 2%
Other 16 7%
Unknown 85 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 March 2016.
All research outputs
#16,783,081
of 25,457,858 outputs
Outputs from Cochrane database of systematic reviews
#10,370
of 11,842 outputs
Outputs of similar age
#166,097
of 293,462 outputs
Outputs of similar age from Cochrane database of systematic reviews
#260
of 292 outputs
Altmetric has tracked 25,457,858 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,842 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 38.9. This one is in the 8th percentile – i.e., 8% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 293,462 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 292 others from the same source and published within six weeks on either side of this one. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.