↓ Skip to main content

Cochrane Database of Systematic Reviews

Different types of implants for reconstructive breast surgery

Overview of attention for article published in Cochrane database of systematic reviews, May 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

policy
1 policy source
twitter
37 tweeters
facebook
5 Facebook pages
wikipedia
1 Wikipedia page

Citations

dimensions_citation
53 Dimensions

Readers on

mendeley
267 Mendeley
Title
Different types of implants for reconstructive breast surgery
Published in
Cochrane database of systematic reviews, May 2016
DOI 10.1002/14651858.cd010895.pub2
Pubmed ID
Authors

Nicola Rocco, Corrado Rispoli, Lorenzo Moja, Bruno Amato, Loredana Iannone, Serena Testa, Andrea Spano, Giuseppe Catanuto, Antonello Accurso, Maurizio B Nava

Abstract

Breast cancer is the most common cancer in women worldwide, and is a leading cause of cancer death among women. Prophylactic or curative mastectomy is often followed by breast reconstruction for which there are several surgical approaches that use breast implants with which surgeons can restore the natural feel, size and shape of the breast. To assess the effects of different types of breast implants on capsular contracture, surgical short- and long-term complications, postoperative satisfaction level and quality of life in women who have undergone reconstructive breast surgery after mastectomy. We searched the Cochrane Breast Cancer Group's Specialised Register on 20 July 2015, MEDLINE (1985 to 20 July 2015), EMBASE (1985 to 20 July 2015) and the Cochrane Central Register of Controlled Trials (CENTRAL; Issue 8, 2015). We also searched the World Health Organization's International Clinical Trials Registry Platform (WHO ICTRP) and ClinicalTrials.gov on 16 July 2015. We included randomised controlled trials (RCTs) and quasi-RCTs that compared different types of breast implants for reconstructive surgery. We considered the following types of intervention: implant envelope surfaces - texturised versus smooth; implant filler material - silicone versus saline, PVP-Hydrogel versus saline; implant shape - anatomical versus round; implant volume - variable versus fixed; brands - different implant manufacturing companies and implant generation (fifth versus previous generations). Two review authors independently assessed methodological quality and extracted data. We used standard Cochrane methodological procedures. The quality of the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. Five RCTs with 202 participants met the inclusion criteria. The women participants were typically in their 50s, and the majority of them (about 82%) received reconstructive surgery following breast cancer, while the others had reconstructive surgery after prophylactic mastectomy. The studies were heterogenous in terms of implant comparisons, which prevented us from pooling the data.The studies were judged as being at an unclear risk of bias for most risk of bias items owing to poor quality of reporting in the trial publications. Three of the five RCTs were judged to be at high risk of attrition bias, and one at high risk of detection bias.Textured silicone versus smooth silicone implants: textured implants were associated with worse outcomes when compared to smooth implants (capsular contracture: risk ratio (RR) 0.82, 95% CI 0.14 to 4.71; 1 study, 20 participants; very low quality evidence; reintervention: RR 0.82, 95% CI 0.14 to 4.71; 1 study, 20 participants; very low quality evidence). No results in this comparison were statistically significant.Silicone versus saline implants: saline-filled implants performed better than silicone-filled implants for some outcomes; specifically, they produced less severe capsular contracture (RR 3.25, 95% CI 1.24 to 8.51; 1 study, 60 participants; very low quality evidence) and increased patient satisfaction (RR 0.60, 95% CI 0.41 to 0.88; 1 study, 58 participants; very low quality evidence). However reintervention was significantly more frequent in the saline-filled implant group than in the silicone-filled group (OR 0.08, 95% CI 0.01 to 0.43; 1 study, 60 participants; very low quality evidence).Poly(N-vinyl-2-pyrrolidone) hydrogel-filled (PVP-hydrogel) versus saline-filled implants: PVP-hydrogel-filled implants were associated with worse outcomes when compared to saline-filled implants (capsular contracture: RR 3.50, 95% CI 0.83 to 14.83; 1 study, 40 participants; very low quality evidence; short-term complications: RR 2.10, 95% CI 0.21 to 21.39; 1 study, 41 participants; very low quality evidence).Anatomical versus round implants: anatomical implants were associated with worse outcomes than round implants (capsular contracture: RR 2.00, 95% CI 0.20 to 20.15; 1 study, 36 participants; very low quality evidence; short-term complications: RR 2.00, 95% CI 0.42 to 9.58; 1 study, 36 participants; very low quality evidence; reintervention: RR 1.50, 95% CI 0.51 to 4.43; 1 study, 36 participants; very low quality evidence). No results in this comparison were statistically significant.Variable-volume versus fixed-volume implants: data about one-stage reconstruction using variable-volume implants were compared with data about fixed-volume implants positioned during the second surgical procedure of two-stage reconstructions. Fixed-volume implant reconstructions were possibly associated with a greater number of women reporting that their reconstruction corresponded with expected results (RR 0.25, 95% CI 0.10 to 0.62; 1 study, 40 participants; very low quality evidence) and fewer reinterventions (RR 7.00, 95% CI 1.82 to 26.89; 1 study, 40 participants; very low quality evidence) when compared to variable-volume implants. A higher patient satisfaction level (rated from 1 to 6, with 1 being very bad and 6 being very good) was found with the fixed-volume implants for overall aesthetic result (mean difference (MD) -1.10, 95% CI -1.59 to -0.61; 1 study, 40 participants; very low quality evidence).There were no studies that examined the effects of recent (fifth) generation silicone implants versus previous generations or different implant manufacturing companies. Despite the central role of breast reconstruction in women with breast cancer, the best implants to use in reconstructive surgery have been studied rarely in the context of RCTs. Furthermore the quality of these studies and the overall evidence they provide is largely unsatisfactory. Some of our results can be interpreted as early evidence of potentially large differences between different surgical approaches, which should be confirmed in new high-quality RCTs that include a larger number of women. These days - even after a few million women have had breasts reconstructed - surgeons cannot inform women about the risks and complications of different implant-based breast reconstructive options on the basis of results derived from RCTs.

Twitter Demographics

The data shown below were collected from the profiles of 37 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 267 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 267 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 43 16%
Student > Bachelor 40 15%
Researcher 22 8%
Student > Ph. D. Student 21 8%
Other 15 6%
Other 50 19%
Unknown 76 28%
Readers by discipline Count As %
Medicine and Dentistry 94 35%
Nursing and Health Professions 26 10%
Biochemistry, Genetics and Molecular Biology 10 4%
Psychology 10 4%
Unspecified 8 3%
Other 34 13%
Unknown 85 32%

Attention Score in Context

This research output has an Altmetric Attention Score of 29. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 September 2020.
All research outputs
#1,142,385
of 22,925,760 outputs
Outputs from Cochrane database of systematic reviews
#2,590
of 12,331 outputs
Outputs of similar age
#22,238
of 323,401 outputs
Outputs of similar age from Cochrane database of systematic reviews
#82
of 285 outputs
Altmetric has tracked 22,925,760 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,331 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 30.5. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,401 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 285 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.