↓ Skip to main content

Cochrane Database of Systematic Reviews

Interventions for improving mobility after hip fracture surgery in adults

Overview of attention for article published in Cochrane database of systematic reviews, September 2022
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (96th percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

blogs
2 blogs
twitter
73 X users
facebook
3 Facebook pages
wikipedia
2 Wikipedia pages

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
170 Mendeley
Title
Interventions for improving mobility after hip fracture surgery in adults
Published in
Cochrane database of systematic reviews, September 2022
DOI 10.1002/14651858.cd001704.pub5
Pubmed ID
Authors

Nicola J Fairhall, Suzanne M Dyer, Jenson Cs Mak, Joanna Diong, Wing S Kwok, Catherine Sherrington

Abstract

Improving mobility outcomes after hip fracture is key to recovery. Possible strategies include gait training, exercise and muscle stimulation. This is an update of a Cochrane Review last published in 2011. To evaluate the effects (benefits and harms) of interventions aimed at improving mobility and physical functioning after hip fracture surgery in adults. We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, CINAHL, trial registers and reference lists, to March 2021. All randomised or quasi-randomised trials assessing mobility strategies after hip fracture surgery. Eligible strategies aimed to improve mobility and included care programmes, exercise (gait, balance and functional training, resistance/strength training, endurance, flexibility, three-dimensional (3D) exercise and general physical activity) or muscle stimulation. Intervention was compared with usual care (in-hospital) or with usual care, no intervention, sham exercise or social visit (post-hospital). Members of the review author team independently selected trials for inclusion, assessed risk of bias and extracted data. We used standard methodological procedures expected by Cochrane. We used the assessment time point closest to four months for in-hospital studies, and the time point closest to the end of the intervention for post-hospital studies. Critical outcomes were mobility, walking speed, functioning, health-related quality of life, mortality, adverse effects and return to living at pre-fracture residence. We included 40 randomised controlled trials (RCTs) with 4059 participants from 17 countries. On average, participants were 80 years old and 80% were women. The median number of study participants was 81 and all trials had unclear or high risk of bias for one or more domains. Most trials excluded people with cognitive impairment (70%), immobility and/or medical conditions affecting mobility (72%). In-hospital setting, mobility strategy versus control Eighteen trials (1433 participants) compared mobility strategies with control (usual care) in hospitals. Overall, such strategies may lead to a moderate, clinically-meaningful increase in mobility (standardised mean difference (SMD) 0.53, 95% confidence interval (CI) 0.10 to 0.96; 7 studies, 507 participants; low-certainty evidence) and a small, clinically meaningful improvement in walking speed (CI crosses zero so does not rule out a lack of effect (SMD 0.16, 95% CI -0.05 to 0.37; 6 studies, 360 participants; moderate-certainty evidence). Mobility strategies may make little or no difference to short-term (risk ratio (RR) 1.06, 95% CI 0.48 to 2.30; 6 studies, 489 participants; low-certainty evidence) or long-term mortality (RR 1.22, 95% CI 0.48 to 3.12; 2 studies, 133 participants; low-certainty evidence), adverse events measured by hospital re-admission (RR 0.70, 95% CI 0.44 to 1.11; 4 studies, 322 participants; low-certainty evidence), or return to pre-fracture residence (RR 1.07, 95% CI 0.73 to 1.56; 2 studies, 240 participants; low-certainty evidence). We are uncertain whether mobility strategies improve functioning or health-related quality of life as the certainty of evidence was very low. Gait, balance and functional training probably causes a moderate improvement in mobility (SMD 0.57, 95% CI 0.07 to 1.06; 6 studies, 463 participants; moderate-certainty evidence). There was little or no difference in effects on mobility for resistance training. No studies of other types of exercise or electrical stimulation reported mobility outcomes. Post-hospital setting, mobility strategy versus control Twenty-two trials (2626 participants) compared mobility strategies with control (usual care, no intervention, sham exercise or social visit) in the post-hospital setting. Mobility strategies lead to a small, clinically meaningful increase in mobility (SMD 0.32, 95% CI 0.11 to 0.54; 7 studies, 761 participants; high-certainty evidence) and a small, clinically meaningful improvement in walking speed compared to control (SMD 0.16, 95% CI 0.04 to 0.29; 14 studies, 1067 participants; high-certainty evidence). Mobility strategies lead to a small, non-clinically meaningful increase in functioning (SMD 0.23, 95% CI 0.10 to 0.36; 9 studies, 936 participants; high-certainty evidence), and probably lead to a slight increase in quality of life that may not be clinically meaningful (SMD 0.14, 95% CI -0.00 to 0.29; 10 studies, 785 participants; moderate-certainty evidence). Mobility strategies probably make little or no difference to short-term mortality (RR 1.01, 95% CI 0.49 to 2.06; 8 studies, 737 participants; moderate-certainty evidence). Mobility strategies may make little or no difference to long-term mortality (RR 0.73, 95% CI 0.39 to 1.37; 4 studies, 588 participants; low-certainty evidence) or adverse events measured by hospital re-admission (95% CI includes a large reduction and large increase, RR 0.86, 95% CI 0.52 to 1.42; 2 studies, 206 participants; low-certainty evidence). Training involving gait, balance and functional exercise leads to a small, clinically meaningful increase in mobility (SMD 0.20, 95% CI 0.05 to 0.36; 5 studies, 621 participants; high-certainty evidence), while training classified as being primarily resistance or strength exercise may lead to a clinically meaningful increase in mobility measured using distance walked in six minutes (mean difference (MD) 55.65, 95% CI 28.58 to 82.72; 3 studies, 198 participants; low-certainty evidence). Training involving multiple intervention components probably leads to a substantial, clinically meaningful increase in mobility (SMD 0.94, 95% CI 0.53 to 1.34; 2 studies, 104 participants; moderate-certainty evidence). We are uncertain of the effect of aerobic training on mobility (very low-certainty evidence). No studies of other types of exercise or electrical stimulation reported mobility outcomes. Interventions targeting improvement in mobility after hip fracture may cause clinically meaningful improvement in mobility and walking speed in hospital and post-hospital settings, compared with conventional care. Interventions that include training of gait, balance and functional tasks are particularly effective. There was little or no between-group difference in the number of adverse events reported. Future trials should include long-term follow-up and economic outcomes, determine the relative impact of different types of exercise and establish effectiveness in emerging economies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 73 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 170 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 170 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 19 11%
Student > Master 13 8%
Other 12 7%
Researcher 10 6%
Student > Ph. D. Student 9 5%
Other 28 16%
Unknown 79 46%
Readers by discipline Count As %
Medicine and Dentistry 41 24%
Nursing and Health Professions 21 12%
Social Sciences 5 3%
Sports and Recreations 4 2%
Biochemistry, Genetics and Molecular Biology 3 2%
Other 11 6%
Unknown 85 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 64. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 January 2024.
All research outputs
#678,527
of 25,743,152 outputs
Outputs from Cochrane database of systematic reviews
#1,243
of 13,137 outputs
Outputs of similar age
#16,364
of 434,266 outputs
Outputs of similar age from Cochrane database of systematic reviews
#18
of 131 outputs
Altmetric has tracked 25,743,152 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,137 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 35.1. This one has done particularly well, scoring higher than 90% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 434,266 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 96% of its contemporaries.
We're also able to compare this research output to 131 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.