↓ Skip to main content

Cochrane Database of Systematic Reviews

Dexrazoxane for preventing or reducing cardiotoxicity in adults and children with cancer receiving anthracyclines

Overview of attention for article published in Cochrane database of systematic reviews, October 2022
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

blogs
1 blog
twitter
9 tweeters

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
20 Mendeley
Title
Dexrazoxane for preventing or reducing cardiotoxicity in adults and children with cancer receiving anthracyclines
Published in
Cochrane database of systematic reviews, October 2022
DOI 10.1002/14651858.cd014638.pub2
Pubmed ID
Authors

Esmée C de Baat, Renée L Mulder, Saro Armenian, Elizabeth AM Feijen, Heynric Grotenhuis, Melissa M Hudson, Annelies MC Mavinkurve-Groothuis, Leontien CM Kremer, Elvira C van Dalen

Abstract

This review is the third update of a previously published Cochrane Review. The original review, looking at all possible cardioprotective agents, was split and this part now focuses on dexrazoxane only. Anthracyclines are effective chemotherapeutic agents in the treatment of numerous malignancies. Unfortunately, their use is limited by a dose-dependent cardiotoxicity. In an effort to prevent or reduce this cardiotoxicity, different cardioprotective agents have been studied, including dexrazoxane. To assess the efficacy of dexrazoxane to prevent or reduce cardiotoxicity and determine possible effects of dexrazoxane on antitumour efficacy, quality of life and toxicities other than cardiac damage in adults and children with cancer receiving anthracyclines when compared to placebo or no additional treatment. We searched CENTRAL, MEDLINE and Embase to May 2021. We also handsearched reference lists, the proceedings of relevant conferences and ongoing trials registers. Randomised controlled trials (RCTs) in which dexrazoxane was compared to no additional therapy or placebo in adults and children with cancer receiving anthracyclines. Two review authors independently performed study selection, data extraction, risk of bias and GRADE assessment of included studies. We analysed results in adults and children separately. We performed analyses according to the Cochrane Handbook for Systematic Reviews of Interventions. For this update, we identified 548 unique records. We included three additional RCTs: two paediatric and one adult. Therefore, we included a total of 13 eligible RCTs (five paediatric and eight adult). The studies enrolled 1252 children with leukaemia, lymphoma or a solid tumour and 1269 participants, who were mostly diagnosed with breast cancer. In adults, moderate-quality evidence showed that there was less clinical heart failure with the use of dexrazoxane (risk ratio (RR) 0.22, 95% confidence interval (CI) 0.11 to 0.43; 7 studies, 1221 adults). In children, we identified no difference in clinical heart failure risk between treatment groups (RR 0.20, 95% CI 0.01 to 4.19; 3 studies, 885 children; low-quality evidence). In three paediatric studies assessing cardiomyopathy/heart failure as the primary cause of death, none of the children had this outcome (1008 children, low-quality evidence). In the adult studies, different definitions for subclinical myocardial dysfunction and clinical heart failure combined were used, but pooled analyses were possible: there was a benefit in favour of the use of dexrazoxane (RR 0.37, 95% CI 0.24 to 0.56; 3 studies, 417 adults and RR 0.46, 95% CI 0.33 to 0.66; 2 studies, 534 adults, respectively, moderate-quality evidence). In the paediatric studies, definitions of subclinical myocardial dysfunction and clinical heart failure combined were incomparable, making pooling impossible. One paediatric study showed a benefit in favour of dexrazoxane (RR 0.33, 95% CI 0.13 to 0.85; 33 children; low-quality evidence), whereas another study showed no difference between treatment groups (Fischer exact P = 0.12; 537 children; very low-quality evidence). Overall survival (OS) was reported in adults and overall mortality in children. The meta-analyses of both outcomes showed no difference between treatment groups (hazard ratio (HR) 1.04, 95% 0.88 to 1.23; 4 studies; moderate-quality evidence; and HR 1.01, 95% CI 0.72 to 1.42; 3 studies, 1008 children; low-quality evidence, respectively). Progression-free survival (PFS) was only reported in adults. We subdivided PFS into three analyses based on the comparability of definitions, and identified a longer PFS in favour of dexrazoxane in one study (HR 0.62, 95% CI 0.43 to 0.90; 164 adults; low-quality evidence). There was no difference between treatment groups in the other two analyses (HR 0.95, 95% CI 0.64 to 1.40; 1 study; low-quality evidence; and HR 1.18, 95% CI 0.97 to 1.43; 2 studies; moderate-quality evidence, respectively). In adults, there was no difference in tumour response rate between treatment groups (RR 0.91, 95% CI 0.79 to 1.04; 6 studies, 956 adults; moderate-quality evidence). We subdivided tumour response rate in children into two analyses based on the comparability of definitions, and identified no difference between treatment groups (RR 1.01, 95% CI 0.95 to 1.07; 1 study, 206 children; very low-quality evidence; and RR 0.92, 95% CI 0.84 to 1.01; 1 study, 200 children; low-quality evidence, respectively). The occurrence of secondary malignant neoplasms (SMN) was only assessed in children. The available and worst-case analyses were identical and showed a difference in favour of the control group (RR 3.08, 95% CI 1.13 to 8.38; 3 studies, 1015 children; low-quality evidence). In the best-case analysis, the direction of effect was the same, but there was no difference between treatment groups (RR 2.51, 95% CI 0.96 to 6.53; 4 studies, 1220 children; low-quality evidence). For other adverse effects, results also varied. None of the studies evaluated quality of life. If not reported, the number of participants for an analysis was unclear. Our meta-analyses showed the efficacy of dexrazoxane in preventing or reducing cardiotoxicity in adults treated with anthracyclines. In children, there was a difference between treatment groups for one cardiac outcome (i.e. for one of the definitions used for clinical heart failure and subclinical myocardial dysfunction combined) in favour of dexrazoxane. In adults, no evidence of a negative effect on tumour response rate, OS and PFS was identified; and in children, no evidence of a negative effect on tumour response rate and overall mortality was identified. The results for adverse effects varied. In children, dexrazoxane may be associated with a higher risk of SMN; in adults this was not addressed. In adults, the quality of the evidence ranged between moderate and low; in children, it ranged between low and very low. Before definitive conclusions on the use of dexrazoxane can be made, especially in children, more high-quality research is needed. We conclude that if the risk of cardiac damage is expected to be high, it might be justified to use dexrazoxane in children and adults with cancer who are treated with anthracyclines. However, clinicians and patients should weigh the cardioprotective effect of dexrazoxane against the possible risk of adverse effects, including SMN, for each individual. For children, the International Late Effects of Childhood Cancer Guideline Harmonization Group has developed a clinical practice guideline.

Twitter Demographics

The data shown below were collected from the profiles of 9 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 3 15%
Student > Bachelor 3 15%
Student > Doctoral Student 2 10%
Researcher 2 10%
Other 2 10%
Other 3 15%
Unknown 5 25%
Readers by discipline Count As %
Medicine and Dentistry 7 35%
Unspecified 4 20%
Nursing and Health Professions 1 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Decision Sciences 1 5%
Other 1 5%
Unknown 5 25%

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 November 2022.
All research outputs
#2,734,256
of 22,609,602 outputs
Outputs from Cochrane database of systematic reviews
#5,410
of 12,290 outputs
Outputs of similar age
#52,452
of 350,113 outputs
Outputs of similar age from Cochrane database of systematic reviews
#14
of 24 outputs
Altmetric has tracked 22,609,602 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,290 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 30.2. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 350,113 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.