↓ Skip to main content

Cochrane Database of Systematic Reviews

Neoadjuvant treatment for stage III and IV cutaneous melanoma

Overview of attention for article published in Cochrane database of systematic reviews, January 2023
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

blogs
1 blog
twitter
14 X users
facebook
1 Facebook page

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
44 Mendeley
Title
Neoadjuvant treatment for stage III and IV cutaneous melanoma
Published in
Cochrane database of systematic reviews, January 2023
DOI 10.1002/14651858.cd012974.pub2
Pubmed ID
Authors

Claire Gorry, Laura McCullagh, Helen O'Donnell, Sarah Barrett, Susanne Schmitz, Michael Barry, Kay Curtin, Eamon Beausang, Rupert Barry, Imelda Coyne

Abstract

Cutaneous melanoma is amongst the most aggressive of all skin cancers. Neoadjuvant treatment is a form of induction therapy, given to shrink a cancerous tumour prior to the main treatment (usually surgery). The purpose is to improve survival and surgical outcomes. This review systematically appraises the literature investigating the use of neoadjuvant treatment for stage III and IV cutaneous melanoma. To assess the effects of neoadjuvant treatment in adults with stage III or stage IV melanoma according to the seventh edition American Joint Committee on Cancer (AJCC) staging system. We searched the following databases up to 10 August 2021 inclusive: Cochrane Skin Specialised Register, CENTRAL, MEDLINE, Embase, LILACS and four trials registers, together with reference checking and contact with study authors to identify additional studies. We also handsearched proceedings from specific conferences from 2016 to 2020 inclusive. Randomised controlled trials (RCTs) of people with stage III and IV melanoma, comparing neoadjuvant treatment strategies (using targeted treatments, immunotherapies, radiotherapy, topical treatments or chemotherapy) with any of these agents or current standard of care (SOC), were eligible for inclusion. We used standard Cochrane methods. Primary outcomes were overall survival (OS) and adverse effects (AEs). Secondary outcomes included time to recurrence (TTR), quality of life (QOL), and overall response rate (ORR). We used GRADE to evaluate the certainty of the evidence. We included eight RCTs involving 402 participants. Studies enrolled adults, mostly with stage III melanoma, investigated immunotherapies, chemotherapy, or targeted treatments, and compared these with surgical excision with or without adjuvant treatment. Duration of follow-up and therapeutic regimens varied, which, combined with heterogeneity in the population and definitions of the endpoints, precluded meta-analysis of all identified studies. We performed a meta-analysis including three studies. We are very uncertain if neoadjuvant treatment increases OS when compared to no neoadjuvant treatment (hazard ratio (HR) 0.43, 95% confidence interval (CI) 0.15 to 1.21; 2 studies, 171 participants; very low-certainty evidence). Neoadjuvant treatment may increase the rate of AEs, but the evidence is very uncertain (26% versus 16%, risk ratio (RR) 1.58, 95% CI 0.97 to 2.55; 2 studies, 162 participants; very low-certainty evidence). We are very uncertain if neoadjuvant treatment increases TTR (HR 0.51, 95% CI 0.22 to 1.17; 2 studies, 171 participants; very low-certainty evidence). Studies did not report ORR as a comparative outcome or measure QOL data. We are very uncertain whether neoadjuvant targeted treatment with dabrafenib and trametinib increases OS (HR 0.28, 95% CI 0.03 to 2.25; 1 study, 21 participants; very low-certainty evidence) or TTR (HR 0.02, 95% CI 0.00 to 0.22; 1 study, 21 participants; very low-certainty evidence) when compared to surgery. The study did not report comparative rates of AEs and overall response, and did not measure QOL. We are very uncertain if neoadjuvant immunotherapy with talimogene laherparepvec increases OS when compared to no neoadjuvant treatment (HR 0.49, 95% CI 0.15 to 1.64; 1 study, 150 participants, very low-certainty evidence). It may have a higher rate of AEs, but the evidence is very uncertain (16.5% versus 5.8%, RR 2.84, 95% CI 0.96 to 8.37; 1 study, 142 participants; very low-certainty evidence). We are very uncertain if it increases TTR (HR 0.75, 95% CI 0.31 to 1.79; 1 study, 150 participants; very low-certainty evidence). The study did not report comparative ORRs or measure QOL. OS was not reported for neoadjuvant immunotherapy (combined ipilimumab and nivolumab) when compared to the combination of ipilimumab and nivolumab as adjuvant treatment. There may be little or no difference in the rate of AEs between these treatments (9%, RR 1.0, 95% CI 0.75 to 1.34; 1 study, 20 participants; low-certainty evidence). The study did not report comparative ORRs or measure TTR and QOL. Neoadjuvant immunotherapy (combined ipilimumab and nivolumab) likely results in little to no difference in OS when compared to neoadjuvant nivolumab monotherapy (P = 0.18; 1 study, 23 participants; moderate-certainty evidence). It may increase the rate of AEs, but the certainty of this evidence is very low (72.8% versus 8.3%, RR 8.73, 95% CI 1.29 to 59; 1 study, 23 participants); this trial was halted early due to observation of disease progression preventing surgical resection in the monotherapy arm and the high rate of treatment-related AEs in the combination arm. Neoadjuvant combination treatment may lead to higher ORR, but the evidence is very uncertain (72.8% versus 25%, RR 2.91, 95% CI 1.02 to 8.27; 1 study, 23 participants; very low-certainty evidence). It likely results in little to no difference in TTR (P = 0.19; 1 study, 23 participants; low-certainty evidence). The study did not measure QOL. OS was not reported for neoadjuvant immunotherapy (combined ipilimumab and nivolumab) when compared to neoadjuvant sequential immunotherapy (ipilimumab then nivolumab). Only Grade 3 to 4 immune-related AEs were reported; fewer were reported with combination treatment, and the sequential treatment arm closed early due to a high incidence of severe AEs. The neoadjuvant combination likely results in a higher ORR compared to sequential neoadjuvant treatment (60.1% versus 42.3%, RR 1.42, 95% CI 0.87 to 2.32; 1 study, 86 participants; low-certainty evidence). The study did not measure TTR and QOL. No data were reported on OS, AEs, TTR, or QOL for the comparison of neoadjuvant interferon (HDI) plus chemotherapy versus neoadjuvant chemotherapy. Neoadjuvant HDI plus chemotherapy may have little to no effect on ORR, but the evidence is very uncertain (33% versus 22%, RR 1.75, 95% CI 0.62 to 4.95; 1 study, 36 participants; very low-certainty evidence). We are uncertain if neoadjuvant treatment increases OS or TTR compared with no neoadjuvant treatment, and it may be associated with a slightly higher rate of AEs. There is insufficient evidence to support the use of neoadjuvant treatment in clinical practice. Priorities for research include the development of a core outcome set for neoadjuvant trials that are adequately powered, with validation of pathological and radiological responses as intermediate endpoints, to investigate the relative benefits of neoadjuvant treatment compared with adjuvant treatment with immunotherapies or targeted therapies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 14 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 14%
Other 4 9%
Student > Ph. D. Student 3 7%
Researcher 3 7%
Unspecified 2 5%
Other 5 11%
Unknown 21 48%
Readers by discipline Count As %
Medicine and Dentistry 11 25%
Unspecified 2 5%
Nursing and Health Professions 2 5%
Business, Management and Accounting 1 2%
Biochemistry, Genetics and Molecular Biology 1 2%
Other 5 11%
Unknown 22 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 17. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 June 2023.
All research outputs
#2,200,114
of 25,738,558 outputs
Outputs from Cochrane database of systematic reviews
#4,563
of 13,137 outputs
Outputs of similar age
#45,779
of 476,975 outputs
Outputs of similar age from Cochrane database of systematic reviews
#44
of 119 outputs
Altmetric has tracked 25,738,558 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,137 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 35.9. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 476,975 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 119 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.