↓ Skip to main content

Cochrane Database of Systematic Reviews

Stem cell therapy for chronic ischaemic heart disease and congestive heart failure

Overview of attention for article published in Cochrane database of systematic reviews, December 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

news
1 news outlet
twitter
5 X users
facebook
1 Facebook page
wikipedia
1 Wikipedia page

Citations

dimensions_citation
138 Dimensions

Readers on

mendeley
453 Mendeley
Title
Stem cell therapy for chronic ischaemic heart disease and congestive heart failure
Published in
Cochrane database of systematic reviews, December 2016
DOI 10.1002/14651858.cd007888.pub3
Pubmed ID
Authors

Sheila A Fisher, Carolyn Doree, Anthony Mathur, David P Taggart, Enca Martin-Rendon

Abstract

A promising approach to the treatment of chronic ischaemic heart disease and congestive heart failure is the use of stem cells. The last decade has seen a plethora of randomised controlled trials developed worldwide, which have generated conflicting results. The critical evaluation of clinical evidence on the safety and efficacy of autologous adult bone marrow-derived stem/progenitor cells as a treatment for chronic ischaemic heart disease and congestive heart failure. We searched CENTRAL in the Cochrane Library, MEDLINE, Embase, CINAHL, LILACS, and four ongoing trial databases for relevant trials up to 14 December 2015. Eligible studies were randomised controlled trials comparing autologous adult stem/progenitor cells with no cells in people with chronic ischaemic heart disease and congestive heart failure. We included co-interventions, such as primary angioplasty, surgery, or administration of stem cell mobilising agents, when administered to treatment and control arms equally. Two review authors independently screened all references for eligibility, assessed trial quality, and extracted data. We undertook a quantitative evaluation of data using random-effects meta-analyses. We evaluated heterogeneity using the I(2) statistic and explored substantial heterogeneity (I(2) greater than 50%) through subgroup analyses. We assessed the quality of the evidence using the GRADE approach. We created a 'Summary of findings' table using GRADEprofiler (GRADEpro), excluding studies with a high or unclear risk of selection bias. We focused our summary of findings on long-term follow-up of mortality, morbidity outcomes, and left ventricular ejection fraction measured by magnetic resonance imaging. We included 38 randomised controlled trials involving 1907 participants (1114 cell therapy, 793 controls) in this review update. Twenty-three trials were at high or unclear risk of selection bias. Other sources of potential bias included lack of blinding of participants (12 trials) and full or partial commercial sponsorship (13 trials).Cell therapy reduced the incidence of long-term mortality (≥ 12 months) (risk ratio (RR) 0.42, 95% confidence interval (CI) 0.21 to 0.87; participants = 491; studies = 9; I(2) = 0%; low-quality evidence). Periprocedural adverse events associated with the mapping or cell/placebo injection procedure were infrequent. Cell therapy was also associated with a long-term reduction in the incidence of non-fatal myocardial infarction (RR 0.38, 95% CI 0.15 to 0.97; participants = 345; studies = 5; I(2) = 0%; low-quality evidence) and incidence of arrhythmias (RR 0.42, 95% CI 0.18 to 0.99; participants = 82; studies = 1; low-quality evidence). However, we found no evidence that cell therapy affects the risk of rehospitalisation for heart failure (RR 0.63, 95% CI 0.36 to 1.09; participants = 375; studies = 6; I(2) = 0%; low-quality evidence) or composite incidence of mortality, non-fatal myocardial infarction, and/or rehospitalisation for heart failure (RR 0.64, 95% CI 0.38 to 1.08; participants = 141; studies = 3; I(2) = 0%; low-quality evidence), or long-term left ventricular ejection fraction when measured by magnetic resonance imaging (mean difference -1.60, 95% CI -8.70 to 5.50; participants = 25; studies = 1; low-quality evidence). This systematic review and meta-analysis found low-quality evidence that treatment with bone marrow-derived stem/progenitor cells reduces mortality and improves left ventricular ejection fraction over short- and long-term follow-up and may reduce the incidence of non-fatal myocardial infarction and improve New York Heart Association (NYHA) Functional Classification in people with chronic ischaemic heart disease and congestive heart failure. These findings should be interpreted with caution, as event rates were generally low, leading to a lack of precision.

Timeline
X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 453 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Netherlands 1 <1%
United States 1 <1%
Unknown 450 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 71 16%
Student > Bachelor 63 14%
Student > Ph. D. Student 41 9%
Researcher 35 8%
Student > Doctoral Student 25 6%
Other 76 17%
Unknown 142 31%
Readers by discipline Count As %
Medicine and Dentistry 153 34%
Nursing and Health Professions 35 8%
Biochemistry, Genetics and Molecular Biology 24 5%
Psychology 14 3%
Agricultural and Biological Sciences 13 3%
Other 52 11%
Unknown 162 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 16. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 January 2021.
All research outputs
#2,266,403
of 25,457,858 outputs
Outputs from Cochrane database of systematic reviews
#4,664
of 11,499 outputs
Outputs of similar age
#44,166
of 422,709 outputs
Outputs of similar age from Cochrane database of systematic reviews
#110
of 224 outputs
Altmetric has tracked 25,457,858 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,499 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 40.0. This one has gotten more attention than average, scoring higher than 61% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 422,709 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 224 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.