↓ Skip to main content

Cochrane Database of Systematic Reviews

Different intensities of glycaemic control for women with gestational diabetes mellitus

Overview of attention for article published in Cochrane database of systematic reviews, October 2023
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
9 X users
facebook
1 Facebook page
wikipedia
1 Wikipedia page

Readers on

mendeley
98 Mendeley
Title
Different intensities of glycaemic control for women with gestational diabetes mellitus
Published in
Cochrane database of systematic reviews, October 2023
DOI 10.1002/14651858.cd011624.pub3
Pubmed ID
Authors

Olivia J Hofer, Ruth Martis, Jane Alsweiler, Caroline A Crowther

Abstract

Gestational diabetes mellitus (GDM) has major short- and long-term implications for both the mother and her baby. GDM is defined as a carbohydrate intolerance resulting in hyperglycaemia or any degree of glucose intolerance with onset or first recognition during pregnancy from 24 weeks' gestation onwards and which resolves following the birth of the baby. Rates for GDM can be as high as 25% depending on the population and diagnostic criteria used, and overall rates are increasing globally. There is wide variation internationally in glycaemic treatment target recommendations for women with GDM that are based on consensus rather than high-quality trials. To assess the effect of different intensities of glycaemic control in pregnant women with GDM on maternal and infant health outcomes. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register, ClinicalTrials.gov, the World Health Organization International Clinical Trials Registry Platform (26 September 2022), and reference lists of the retrieved studies. We included randomised controlled trials (RCTs), cluster-RCTs, and quasi-RCTs. Trials were eligible for inclusion if women were diagnosed with GDM during pregnancy and the trial compared tighter and less-tight glycaemic targets during management. We defined tighter glycaemic targets as lower numerical glycaemic concentrations, and less-tight glycaemic targets as higher numerical glycaemic concentrations. We used standard Cochrane methods for carrying out data collection, assessing risk of bias, and analysing results. Two review authors independently assessed trial eligibility for inclusion, evaluated risk of bias, and extracted data for the four included studies. We assessed the certainty of evidence for selected outcomes using the GRADE approach. Primary maternal outcomes included hypertensive disorders of pregnancy and subsequent development of type 2 diabetes. Primary infant outcomes included perinatal mortality, large-for-gestational-age, composite of mortality or serious morbidity, and neurosensory disability. This was an update of a previous review completed in 2016. We included four RCTs (reporting on 1731 women) that compared a tighter glycaemic control with less-tight glycaemic control in women diagnosed with GDM. Three studies were parallel RCTs, and one study was a stepped-wedged cluster-RCT. The trials took place in Canada, New Zealand, Russia, and the USA. We judged the overall risk of bias to be unclear. Two trials were only published in abstract form. Tight glycaemic targets used in the trials ranged between ≤ 5.0 and 5.1 mmol/L for fasting plasma glucose and ≤ 6.7 and 7.4 mmol/L postprandial. Less-tight targets for glycaemic control used in the included trials ranged between < 5.3 and 5.8 mmol/L for fasting plasma glucose and < 7.8 and 8.0 mmol/L postprandial. For the maternal outcomes, compared with less-tight glycaemic control, the evidence suggests a possible increase in hypertensive disorders of pregnancy with tighter glycaemic control (risk ratio (RR) 1.16, 95% confidence interval (CI) 0.80 to 1.69, 2 trials, 1491 women; low certainty evidence); however, the 95% CI is compatible with a wide range of effects that encompass both benefit and harm. Tighter glycaemic control likely results in little to no difference in caesarean section rates (RR 0.98, 95% CI 0.82 to 1.17, 3 studies, 1662 women; moderate certainty evidence) or induction of labour rates (RR 0.96, 95% CI 0.78 to 1.18, 1 study, 1096 women; moderate certainty evidence) compared with less-tight control. No data were reported for the outcomes of subsequent development of type 2 diabetes, perineal trauma, return to pre-pregnancy weight, and postnatal depression. For the infant outcomes, it was difficult to determine if there was a difference in perinatal mortality (RR not estimable, 2 studies, 1499 infants; low certainty evidence), and there was likely no difference in being large-for-gestational-age (RR 0.96, 95% CI 0.72 to 1.29, 3 studies, 1556 infants; moderate certainty evidence). The evidence suggests a possible reduction in the composite of mortality or serious morbidity with tighter glycaemic control (RR 0.84, 95% CI 0.55 to 1.29, 3 trials, 1559 infants; low certainty evidence); however, the 95% CI is compatible with a wide range of effects that encompass both benefit and harm. There is probably little difference between groups in infant hypoglycaemia (RR 0.92, 95% CI 0.72 to 1.18, 3 studies, 1556 infants; moderate certainty evidence). Tighter glycaemic control may not reduce adiposity in infants of women with GDM compared with less-tight control (mean difference -0.62%, 95% CI -3.23 to 1.99, 1 study, 60 infants; low certainty evidence), but the wide CI suggests significant uncertainty. We found no data for the long-term outcomes of diabetes or neurosensory disability. Women assigned to tighter glycaemic control experienced an increase in the use of pharmacological therapy compared with women assigned to less-tight glycaemic control (RR 1.37, 95% CI 1.17 to 1.59, 4 trials, 1718 women). Tighter glycaemic control reducedadherence with treatment compared with less-tight glycaemic control (RR 0.41, 95% CI 0.32 to 0.51, 1 trial, 395 women). Overall the certainty of evidence assessed using GRADE ranged from low to moderate, downgraded primarily due to risk of bias and imprecision. This review is based on four trials (1731 women) with an overall unclear risk of bias. The trials provided data on most primary outcomes and suggest that tighter glycaemic control may increase the risk of hypertensive disorders of pregnancy. The risk of birth of a large-for-gestational-age infant and perinatal mortality may be similar between groups, and tighter glycaemic targets may result in a possible reduction in composite of death or severe infant morbidity. However, the CIs for these outcomes are wide, suggesting both benefit and harm. There remains limited evidence regarding the benefit of different glycaemic targets for women with GDM to minimise adverse effects on maternal and infant health. Glycaemic target recommendations from international professional organisations vary widely and are currently reliant on consensus given the lack of high-certainty evidence. Further high-quality trials are needed, and these should assess both short- and long-term health outcomes for women and their babies; include women's experiences; and assess health services costs in order to confirm the current findings. Two trials are ongoing.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 98 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Hungary 1 1%
United States 1 1%
Netherlands 1 1%
Unknown 95 97%

Demographic breakdown

Readers by professional status Count As %
Unspecified 23 23%
Student > Master 13 13%
Other 11 11%
Student > Ph. D. Student 10 10%
Researcher 5 5%
Other 16 16%
Unknown 20 20%
Readers by discipline Count As %
Medicine and Dentistry 34 35%
Unspecified 23 23%
Nursing and Health Professions 9 9%
Sports and Recreations 4 4%
Pharmacology, Toxicology and Pharmaceutical Science 2 2%
Other 7 7%
Unknown 19 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 January 2024.
All research outputs
#4,320,018
of 25,223,158 outputs
Outputs from Cochrane database of systematic reviews
#6,841
of 13,044 outputs
Outputs of similar age
#64,118
of 345,463 outputs
Outputs of similar age from Cochrane database of systematic reviews
#56
of 106 outputs
Altmetric has tracked 25,223,158 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,044 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 35.5. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 345,463 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 106 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.