↓ Skip to main content

Cochrane Database of Systematic Reviews

Pharmacological interventions for non-alcohol related fatty liver disease (NAFLD)

Overview of attention for article published in Cochrane database of systematic reviews, March 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

blogs
1 blog
twitter
3 tweeters

Citations

dimensions_citation
53 Dimensions

Readers on

mendeley
96 Mendeley
Title
Pharmacological interventions for non-alcohol related fatty liver disease (NAFLD)
Published in
Cochrane database of systematic reviews, March 2017
DOI 10.1002/14651858.cd011640.pub2
Pubmed ID
Authors

Rosa Lombardi, Simona Onali, Douglas Thorburn, Brian R Davidson, Kurinchi Selvan Gurusamy, Emmanuel Tsochatzis

Abstract

Non-alcohol related fatty liver disease (commonly called non-alcoholic fatty liver disease (NAFLD)) is liver steatosis in the absence of significant alcohol consumption, use of hepatotoxic medication, or other disorders affecting the liver such as hepatitis C virus infection, Wilson's disease, and starvation. NAFLD embraces the full spectrum of disease from pure steatosis (i.e. uncomplicated fatty liver) to non-alcoholic steatohepatitis (NASH), via NASH-cirrhosis to cirrhosis. The optimal pharmacological treatment for people with NAFLD remains uncertain. To assess the comparative benefits and harms of different pharmacological interventions in the treatment of NAFLD through a network meta-analysis and to generate rankings of the available pharmacological treatments according to their safety and efficacy. However, it was not possible to assess whether the potential effect modifiers were similar across different comparisons. Therefore, we did not perform the network meta-analysis, and instead, assessed the comparative benefits and harms of different interventions using standard Cochrane methodology. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Science Citation Index Expanded, the World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.com to August 2016. We included only randomised clinical trials (irrespective of language, blinding, or publication status) in participants with NAFLD. We excluded trials which included participants who had previously undergone liver transplantation. We considered any of the various pharmacological interventions compared with each other or with placebo or no intervention. We calculated the odds ratio (OR) and rate ratio with 95% confidence intervals (CI) using both fixed-effect and random-effects models based on an available participant analysis with Review Manager. We assessed risk of bias according to the Cochrane risk of bias tool, controlled risk of random errors with Trial Sequential Analysis, and assessed the quality of the evidence using GRADE. We identified 77 trials including 6287 participants that met the inclusion criteria of this review. Forty-one trials (3829 participants) provided information for one or more outcomes. Only one trial was at low risk of bias in all domains. All other trials were at high risk of bias in one or more domains. Overall, all the evidence was very low quality. Thirty-five trials included only participants with non-alcohol related steatohepatitis (NASH) (based on biopsy confirmation). Five trials included only participants with diabetes mellitus; 14 trials included only participants without diabetes mellitus. The follow-up in the trials ranged from one month to 24 months.We present here only the comparisons of active intervention versus no intervention in which two or more trials reported at least one of the following outcomes: mortality at maximal follow-up, serious adverse events, and health-related quality of life, the outcomes that determine whether a treatment should be used. Antioxidants versus no interventionThere was no mortality in either group (87 participants; 1 trial; very low quality evidence). None of the participants developed serious adverse events in the trial which reported the proportion of people with serious adverse events (87 participants; 1 trial; very low quality evidence). There was no evidence of difference in the number of serious adverse events between antioxidants and no intervention (rate ratio 0.89, 95% CI 0.36 to 2.19; 254 participants; 2 trials; very low quality evidence). None of the trials reported health-related quality of life. Bile acids versus no interventionThere was no evidence of difference in mortality at maximal follow-up (OR 5.11, 95% CI 0.24 to 107.34; 659 participants; 4 trials; very low quality evidence), proportion of people with serious adverse events (OR 1.56, 95% CI 0.84 to 2.88; 404 participants; 3 trials; very low quality evidence), or the number of serious adverse events (rate ratio 1.01, 95% CI 0.66 to 1.54; 404 participants; 3 trials; very low quality evidence) between bile acids and no intervention. None of the trials reported health-related quality of life. Thiazolidinediones versus no interventionThere was no mortality in either group (74 participants; 1 trial; very low quality evidence). None of the participants developed serious adverse events in the two trials which reported the proportion of people with serious adverse events (194 participants; 2 trials; very low quality evidence). There was no evidence of difference in the number of serious adverse events between thiazolidinediones and no intervention (rate ratio 0.25, 95% CI 0.06 to 1.05; 357 participants; 3 trials; very low quality evidence). None of the trials reported health-related quality of life. Source of fundingTwenty-six trials were partially- or fully-funded by pharmaceutical companies that would benefit, based on the results of the trial. Twelve trials did not receive any additional funding or were funded by parties with no vested interest in the results. The source of funding was not provided in 39 trials. Due to the very low quality evidence, we are very uncertain about the effectiveness of pharmacological treatments for people with NAFLD including those with steatohepatitis. Further well-designed randomised clinical trials with sufficiently large sample sizes are necessary.

Twitter Demographics

The data shown below were collected from the profiles of 3 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 96 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 96 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 13%
Student > Ph. D. Student 11 11%
Student > Postgraduate 10 10%
Student > Bachelor 8 8%
Other 7 7%
Other 18 19%
Unknown 30 31%
Readers by discipline Count As %
Medicine and Dentistry 37 39%
Nursing and Health Professions 6 6%
Pharmacology, Toxicology and Pharmaceutical Science 4 4%
Biochemistry, Genetics and Molecular Biology 2 2%
Neuroscience 2 2%
Other 9 9%
Unknown 36 38%

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 April 2018.
All research outputs
#2,645,325
of 17,364,317 outputs
Outputs from Cochrane database of systematic reviews
#5,234
of 11,660 outputs
Outputs of similar age
#56,190
of 273,216 outputs
Outputs of similar age from Cochrane database of systematic reviews
#130
of 248 outputs
Altmetric has tracked 17,364,317 research outputs across all sources so far. Compared to these this one has done well and is in the 84th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,660 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.0. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 273,216 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 248 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.