↓ Skip to main content

Cochrane Database of Systematic Reviews

Methadone for neuropathic pain in adults

Overview of attention for article published in Cochrane database of systematic reviews, May 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

1 blog
1 policy source
30 X users
1 Facebook page
2 Wikipedia pages


66 Dimensions

Readers on

379 Mendeley
Methadone for neuropathic pain in adults
Published in
Cochrane database of systematic reviews, May 2017
DOI 10.1002/14651858.cd012499.pub2
Pubmed ID

Ewan D McNicol, McKenzie C Ferguson, Roman Schumann


This review replaces an earlier review, "Methadone for chronic non-cancer pain in adults". This review serves to update the original and includes only studies of neuropathic pain. Methadone belongs to a class of analgesics known as opioids, that are considered the cornerstone of therapy for moderate-to-severe postsurgical pain and pain due to life-threatening illnesses; however, their use in neuropathic pain is controversial. Methadone has many characteristics that differentiate it from other opioids, which suggests that it may have a different efficacy and safety profile. To assess the analgesic efficacy and adverse events of methadone for chronic neuropathic pain in adults. We searched the following databases: CENTRAL (CRSO), MEDLINE (Ovid), and Embase (Ovid), and two clinical trial registries. We also searched the reference lists of retrieved articles. The date of the most recent search was 30 November 2016. We included randomised, double-blind studies of two weeks' duration or longer, comparing methadone (in any dose, administered by any route, and in any formulation) with placebo or another active treatment in chronic neuropathic pain. We used standard methodological procedures expected by Cochrane. Two review authors independently considered trials for inclusion in the review, assessed risk of bias, and extracted data. There were insufficient data to perform pooled analyses. We assessed the overall quality of the evidence for each outcome using GRADE and created a 'Summary of findings' table. We included three studies, involving 105 participants. All were cross-over studies, one involving 19 participants with diverse neuropathic pain syndromes, the other two involving 86 participants with postherpetic neuralgia. Study phases ranged from 20 days to approximately eight weeks. All administered methadone orally, in doses ranging from 10 mg to 80 mg daily. Comparators were primarily placebo, but one study also included morphine and tricyclic antidepressants.The included studies had several limitations related to risk of bias, particularly incomplete reporting, selective outcome reporting, and small sample sizes.There were very limited data for our primary outcomes of participants with at least 30% or at least 50% pain relief. Two studies reported that 11/29 participants receiving methadone achieved 30% pain relief versus 7/29 participants receiving placebo. Only one study presented data in a manner that allowed us to calculate the number of participants with at least 50% pain relief. None of the 19 participants achieved a 50% reduction in pain intensity, either when receiving methadone or when receiving placebo. No study provided data for our other primary outcomes of Patient Global Impression of Change scale (PGIC) much or very much improved (equivalent to at least 30% pain relief) and PGIC very much improved (equivalent to at least 50% pain relief).For secondary efficacy outcomes, one study reported maximum and mean pain intensity and pain relief, and reported statistically significant improvements versus placebo for all outcomes with 20 mg daily doses of methadone, but not with 10 mg daily doses. The second study reported differences in pain reduction between methadone (n = 26) and morphine (n = 38) and found morphine to be statistically superior. The third study reported the number of responders (variously defined) for several pain and functional outcomes and found methadone to be statistically superior to placebo for the outcomes of categorical pain intensity and evoked pain. In the two studies that reported data, 0/29 participants withdrew due to lack of efficacy, whereas 4/29 participants withdrew due to adverse events while taking methadone versus 3/29 while taking placebo.One study reported incidences for several individual adverse events, but found a statistically significant increased incidence for methadone over placebo for only one event, dizziness. The other studies did not report data in a manner that enabled us to analyze adverse events. There were no serious adverse events or deaths reported.We assessed the quality of the evidence as very low for all efficacy and safety outcomes using GRADE, primarily because of the heterogeneity of study designs and populations, short durations, cross-over methodology, and few participants and events. The three studies provide very limited, very low quality evidence of the efficacy and safety of methadone for chronic neuropathic pain, and there were too few data for pooled analysis of efficacy or harm, or to have confidence in the results of the individual studies. No conclusions can be made regarding differences in efficacy or safety between methadone and placebo, other opioids, or other treatments.

X Demographics

X Demographics

The data shown below were collected from the profiles of 30 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 379 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 379 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 54 14%
Student > Bachelor 41 11%
Student > Ph. D. Student 32 8%
Researcher 31 8%
Other 26 7%
Other 76 20%
Unknown 119 31%
Readers by discipline Count As %
Medicine and Dentistry 119 31%
Nursing and Health Professions 42 11%
Pharmacology, Toxicology and Pharmaceutical Science 17 4%
Psychology 14 4%
Social Sciences 11 3%
Other 46 12%
Unknown 130 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 31. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 April 2021.
All research outputs
of 25,390,692 outputs
Outputs from Cochrane database of systematic reviews
of 12,521 outputs
Outputs of similar age
of 301,460 outputs
Outputs of similar age from Cochrane database of systematic reviews
of 244 outputs
Altmetric has tracked 25,390,692 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,521 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 37.2. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 301,460 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 244 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.