↓ Skip to main content

Cochrane Database of Systematic Reviews

Circuit class therapy for improving mobility after stroke

Overview of attention for article published in Cochrane database of systematic reviews, June 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (96th percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Mentioned by

blogs
2 blogs
twitter
98 tweeters
facebook
2 Facebook pages

Citations

dimensions_citation
51 Dimensions

Readers on

mendeley
437 Mendeley
Title
Circuit class therapy for improving mobility after stroke
Published in
Cochrane database of systematic reviews, June 2017
DOI 10.1002/14651858.cd007513.pub3
Pubmed ID
Authors

Coralie English, Susan L Hillier, Elizabeth A Lynch

Abstract

Circuit class therapy (CCT) offers a supervised group forum for people after stroke to practise tasks, enabling increased practice time without increasing staffing. This is an update of the original review published in 2010. To examine the effectiveness and safety of CCT on mobility in adults with stroke. We searched the Cochrane Stroke Group Trials Register (last searched January 2017), CENTRAL (the Cochrane Library, Issue 12, 2016), MEDLINE (1950 to January 2017), Embase (1980 to January 2017), CINAHL (1982 to January 2017), and 14 other electronic databases (to January 2017). We also searched proceedings from relevant conferences, reference lists, and unpublished theses; contacted authors of published trials and other experts in the field; and searched relevant clinical trials and research registers. Randomised controlled trials (RCTs) including people over 18 years old, diagnosed with stroke of any severity, at any stage, or in any setting, receiving CCT. Review authors independently selected trials for inclusion, assessed risk of bias in all included studies, and extracted data. We included 17 RCTs involving 1297 participants. Participants were stroke survivors living in the community or receiving inpatient rehabilitation. Most could walk 10 metres without assistance. Ten studies (835 participants) measured walking capacity (measuring how far the participant could walk in six minutes) demonstrating that CCT was superior to the comparison intervention (Six-Minute Walk Test: mean difference (MD), fixed-effect, 60.86 m, 95% confidence interval (CI) 44.55 to 77.17, GRADE: moderate). Eight studies (744 participants) measured gait speed, again finding in favour of CCT compared with other interventions (MD 0.15 m/s, 95% CI 0.10 to 0.19, GRADE: moderate). Both of these effects are considered clinically meaningful. We were able to pool other measures to demonstrate the superior effects of CCT for aspects of walking and balance (Timed Up and Go: five studies, 488 participants, MD -3.62 seconds, 95% CI -6.09 to -1.16; Activities of Balance Confidence scale: two studies, 103 participants, MD 7.76, 95% CI 0.66 to 14.87). Two other pooled balance measures failed to demonstrate superior effects (Berg Blance Scale and Step Test). Independent mobility, as measured by the Stroke Impact Scale, Functional Ambulation Classification and the Rivermead Mobility Index, also improved more in CCT interventions compared with others. Length of stay showed a non-significant effect in favour of CCT (two trials, 217 participants, MD -16.35, 95% CI -37.69 to 4.99). Eight trials (815 participants) measured adverse events (falls during therapy): there was a non-significant effect of greater risk of falls in the CCT groups (RD 0.03, 95% CI -0.02 to 0.08, GRADE: very low). Time after stroke did not make a difference to the positive outcomes, nor did the quality or size of the trials. Heterogeneity was generally low; risk of bias was variable across the studies with poor reporting of study conduct in several of the trials. There is moderate evidence that CCT is effective in improving mobility for people after stroke - they may be able to walk further, faster, with more independence and confidence in their balance. The effects may be greater later after the stroke, and are of clinical significance. Further high-quality research is required, investigating quality of life, participation and cost-benefits, that compares CCT with standard care and that also investigates the influence of factors such as stroke severity and age. The potential risk of increased falls during CCT needs to be monitored.

Twitter Demographics

The data shown below were collected from the profiles of 98 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 437 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
United States 1 <1%
Brazil 1 <1%
Unknown 434 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 82 19%
Student > Bachelor 61 14%
Researcher 34 8%
Student > Ph. D. Student 33 8%
Other 18 4%
Other 73 17%
Unknown 136 31%
Readers by discipline Count As %
Nursing and Health Professions 89 20%
Medicine and Dentistry 84 19%
Neuroscience 23 5%
Sports and Recreations 21 5%
Social Sciences 14 3%
Other 51 12%
Unknown 155 35%

Attention Score in Context

This research output has an Altmetric Attention Score of 76. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 June 2021.
All research outputs
#427,151
of 21,338,015 outputs
Outputs from Cochrane database of systematic reviews
#834
of 12,042 outputs
Outputs of similar age
#10,297
of 289,576 outputs
Outputs of similar age from Cochrane database of systematic reviews
#30
of 241 outputs
Altmetric has tracked 21,338,015 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,042 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 29.0. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 289,576 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 96% of its contemporaries.
We're also able to compare this research output to 241 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 87% of its contemporaries.