↓ Skip to main content

Cochrane Database of Systematic Reviews

Patient education in the management of coronary heart disease

Overview of attention for article published in Cochrane database of systematic reviews, June 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (59th percentile)

Mentioned by

twitter
34 tweeters
facebook
3 Facebook pages

Citations

dimensions_citation
109 Dimensions

Readers on

mendeley
774 Mendeley
Title
Patient education in the management of coronary heart disease
Published in
Cochrane database of systematic reviews, June 2017
DOI 10.1002/14651858.cd008895.pub3
Pubmed ID
Authors

Lindsey Anderson, James PR Brown, Alexander M Clark, Hasnain Dalal, Henriette Knold K Rossau, Charlene Bridges, Rod S Taylor

Abstract

Coronary heart disease (CHD) is the single most common cause of death globally. However, with falling CHD mortality rates, an increasing number of people live with CHD and may need support to manage their symptoms and improve prognosis. Cardiac rehabilitation is a complex multifaceted intervention which aims to improve the health outcomes of people with CHD. Cardiac rehabilitation consists of three core modalities: education, exercise training and psychological support. This is an update of a Cochrane systematic review previously published in 2011, which aims to investigate the specific impact of the educational component of cardiac rehabilitation. 1. To assess the effects of patient education delivered as part of cardiac rehabilitation, compared with usual care on mortality, morbidity, health-related quality of life (HRQoL) and healthcare costs in patients with CHD.2. To explore the potential study level predictors of the effects of patient education in patients with CHD (e.g. individual versus group intervention, timing with respect to index cardiac event). We updated searches from the previous Cochrane review, by searching the Cochrane Central Register of Controlled Trials (CENTRAL) (Cochrane Library, Issue 6, 2016), MEDLINE (Ovid), Embase (Ovid), PsycINFO (Ovid) and CINAHL (EBSCO) in June 2016. Three trials registries, previous systematic reviews and reference lists of included studies were also searched. No language restrictions were applied. 1. Randomised controlled trials (RCTs) where the primary interventional intent was education delivered as part of cardiac rehabilitation.2. Studies with a minimum of six-months follow-up and published in 1990 or later.3. Adults with a diagnosis of CHD. Two review authors independently screened all identified references for inclusion based on the above inclusion criteria. One author extracted study characteristics from the included trials and assessed their risk of bias; a second review author checked data. Two independent reviewers extracted outcome data onto a standardised collection form. For dichotomous variables, risk ratios and 95% confidence intervals (CI) were derived for each outcome. Heterogeneity amongst included studies was explored qualitatively and quantitatively. Where appropriate and possible, results from included studies were combined for each outcome to give an overall estimate of treatment effect. Given the degree of clinical heterogeneity seen in participant selection, interventions and comparators across studies, we decided it was appropriate to pool studies using random-effects modelling. We planned to undertake subgroup analysis and stratified meta-analysis, sensitivity analysis and meta-regression to examine potential treatment effect modifiers. We used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to evaluate the quality of the evidence and the GRADE profiler (GRADEpro GDT) to create summary of findings tables. This updated review included a total of 22 trials which randomised 76,864 people with CHD to an education intervention or a 'no education' comparator. Nine new trials (8215 people) were included for this update. We judged most included studies as low risk of bias across most domains. Educational 'dose' ranged from one 40 minute face-to-face session plus a 15 minute follow-up call, to a four-week residential stay with 11 months of follow-up sessions. Control groups received usual medical care, typically consisting of referral to an outpatient cardiologist, primary care physician, or both.We found evidence of no difference in effect of education-based interventions on total mortality (13 studies, 10,075 participants; 189/5187 (3.6%) versus 222/4888 (4.6%); random effects risk ratio (RR) 0.80, 95% CI 0.60 to 1.05; moderate quality evidence). Individual causes of mortality were reported rarely, and we were unable to report separate results for cardiovascular mortality or non-cardiovascular mortality. There was evidence of no difference in effect of education-based interventions on fatal and/or non fatal myocardial infarction (MI) (2 studies, 209 participants; 7/107 (6.5%) versus 12/102 (11.8%); random effects RR 0.63, 95% CI 0.26 to 1.48; very low quality of evidence). However, there was some evidence of a reduction with education in fatal and/or non-fatal cardiovascular events (2 studies, 310 studies; 21/152 (13.8%) versus 61/158 (38.6%); random effects RR 0.36, 95% CI 0.23 to 0.56; low quality evidence). There was evidence of no difference in effect of education on the rate of total revascularisations (3 studies, 456 participants; 5/228 (2.2%) versus 8/228 (3.5%); random effects RR 0.58, 95% CI 0.19 to 1.71; very low quality evidence) or hospitalisations (5 studies, 14,849 participants; 656/10048 (6.5%) versus 381/4801 (7.9%); random effects RR 0.93, 95% CI 0.71 to 1.21; very low quality evidence). There was evidence of no difference between groups for all cause withdrawal (17 studies, 10,972 participants; 525/5632 (9.3%) versus 493/5340 (9.2%); random effects RR 1.04, 95% CI 0.88 to 1.22; low quality evidence). Although some health-related quality of life (HRQoL) domain scores were higher with education, there was no consistent evidence of superiority across all domains. We found no reduction in total mortality, in people who received education delivered as part of cardiac rehabilitation, compared to people in control groups (moderate quality evidence). There were no improvements in fatal or non fatal MI, total revascularisations or hospitalisations, with education. There was some evidence of a reduction in fatal and/or non-fatal cardiovascular events with education, but this was based on only two studies. There was also some evidence to suggest that education-based interventions may improve HRQoL. Our findings are supportive of current national and international clinical guidelines that cardiac rehabilitation for people with CHD should be comprehensive and include educational interventions together with exercise and psychological therapy. Further definitive research into education interventions for people with CHD is needed.

Twitter Demographics

The data shown below were collected from the profiles of 34 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 774 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 <1%
Germany 2 <1%
Spain 2 <1%
United Kingdom 1 <1%
Indonesia 1 <1%
Canada 1 <1%
Unknown 764 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 133 17%
Student > Bachelor 105 14%
Researcher 67 9%
Student > Ph. D. Student 64 8%
Student > Postgraduate 43 6%
Other 157 20%
Unknown 205 26%
Readers by discipline Count As %
Medicine and Dentistry 212 27%
Nursing and Health Professions 126 16%
Psychology 44 6%
Social Sciences 32 4%
Unspecified 22 3%
Other 102 13%
Unknown 236 30%

Attention Score in Context

This research output has an Altmetric Attention Score of 22. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 January 2022.
All research outputs
#1,283,460
of 20,947,122 outputs
Outputs from Cochrane database of systematic reviews
#3,064
of 12,058 outputs
Outputs of similar age
#27,784
of 284,261 outputs
Outputs of similar age from Cochrane database of systematic reviews
#103
of 253 outputs
Altmetric has tracked 20,947,122 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,058 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 28.5. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 284,261 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 253 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 59% of its contemporaries.