↓ Skip to main content

Cochrane Database of Systematic Reviews

Fitness training for cardiorespiratory conditioning after traumatic brain injury

Overview of attention for article published in Cochrane database of systematic reviews, December 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Mentioned by

24 tweeters
6 Facebook pages
2 Wikipedia pages


26 Dimensions

Readers on

548 Mendeley
Fitness training for cardiorespiratory conditioning after traumatic brain injury
Published in
Cochrane database of systematic reviews, December 2017
DOI 10.1002/14651858.cd006123.pub3
Pubmed ID

Leanne Hassett, Anne M Moseley, Alison R Harmer


Reduced cardiorespiratory fitness (cardiorespiratory deconditioning) is a common consequence of traumatic brain injury (TBI). Fitness training may be implemented to address this impairment. The primary objective of this updated review was to evaluate whether fitness training improves cardiorespiratory fitness in people who have sustained a TBI. The secondary objectives were to evaluate whether fitness training improves body function and structure (physical and cognitive impairments, psychological responses resulting from the injury), activity limitations and participation restrictions in people who have sustained a TBI as well as to evaluate its safety, acceptance, feasibility and suitability. We searched 10 electronic databases (the Cochrane Injuries Group Trials Register; the Cochrane Central Register of Controlled Trials (CENTRAL); Embase; PubMed (MEDLINE); CINAHL; AMED; SPORTDiscus; PsycINFO; PEDro and PsycBITE) and the International Clinical Trials Registry Platform for relevant trials. In addition we screened reference lists from systematic reviews related to the topic that we identified from our search, and from the included studies, and contacted trialists to identify further studies. The search was run in August 2017. Randomised controlled studies with TBI participants were eligible if they compared an exercise programme incorporating cardiorespiratory fitness training to usual care, a non-exercise intervention, or no intervention. Two authors independently screened the search results, extracted data and assessed bias. We contacted all trialists for additional information. We calculated mean difference (MD) or standardised mean difference (SMD) and 95% confidence intervals (CI) for continuous data, and odds ratio with 95% CI for dichotomous data. We pooled data when there were sufficient studies with homogeneity. Two new studies incorporating 96 participants were identified in this update and were added to the six previously included studies. A total of eight studies incorporating 399 participants are included in the updated review. The participants were primarily men aged in their mid-thirties who had sustained a severe TBI. No studies included children. The studies were clinically diverse with regard to the interventions, time postinjury and the outcome measures used. At the end of intervention, the mean difference in peak power output was 35.47 watts (W) in favour of fitness training (MD 35.47 W, 95% CI 2.53 to 68.41 W; 3 studies, 67 participants; low-quality evidence). The CIs include both a possible clinically important effect and a possible negligible effect, and there was moderate heterogeneity among the studies.Five of the secondary outcomes had sufficient data at the end of intervention to enable meta-analysis: body composition (SMD 0.29 standard deviations (favouring control), 95% CI -0.22 to 0.79; 2 studies, 61 participants; low-quality evidence), strength (SMD -0.02 (favouring control), 95% CI -0.86 to 0.83; 2 studies, 23 participants; very low-quality evidence), fatigue (SMD -0.32 (favouring fitness training), 95% CI -0.90 to 0.26; 3 studies, 130 participants; very low-quality evidence), depression (SMD -0.43 (favouring fitness training), 95% CI -0.92 to 0.06; 4 studies, 220 participants; very low-quality evidence), and neuromotor function (MD 0.01 m (favouring fitness training), 95% CI -0.25 to 0.27; 2 studies, 109 participants; moderate-quality evidence). It was uncertain whether fitness training was more or less effective at improving these secondary outcomes compared to the control interventions. Quality of life was assessed in three trials, but we did not pool the data because of substantial heterogeneity. Five of the eight included studies had no dropouts from their intervention group and no adverse events were reported in any study. There is low-quality evidence that fitness training is effective at improving cardiorespiratory deconditioning after TBI; there is insufficient evidence to draw any definitive conclusions about the other outcomes. Whilst the intervention appears to be accepted by people with TBI, and there is no evidence of harm, more adequately powered and well-designed studies are required to determine a more precise estimate of the effect on cardiorespiratory fitness, as well as the effects across a range of important outcome measures and in people with different characteristics (e.g. children). In the absence of high quality evidence, clinicians may be guided by pre-exercise screening checklists to ensure the person with traumatic brain injury is safe to exercise, and set training parameters using guidelines established by the American College of Sports Medicine for people who have suffered a brain injury.

Twitter Demographics

The data shown below were collected from the profiles of 24 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 548 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 548 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 84 15%
Student > Ph. D. Student 64 12%
Student > Bachelor 58 11%
Researcher 46 8%
Student > Doctoral Student 30 5%
Other 91 17%
Unknown 175 32%
Readers by discipline Count As %
Medicine and Dentistry 86 16%
Nursing and Health Professions 83 15%
Psychology 39 7%
Sports and Recreations 34 6%
Social Sciences 23 4%
Other 82 15%
Unknown 201 37%

Attention Score in Context

This research output has an Altmetric Attention Score of 20. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 December 2022.
All research outputs
of 22,647,730 outputs
Outputs from Cochrane database of systematic reviews
of 12,295 outputs
Outputs of similar age
of 439,928 outputs
Outputs of similar age from Cochrane database of systematic reviews
of 238 outputs
Altmetric has tracked 22,647,730 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,295 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 30.2. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,928 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 238 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.