↓ Skip to main content

Cochrane Database of Systematic Reviews

Rufinamide add‐on therapy for refractory epilepsy

Overview of attention for article published in Cochrane database of systematic reviews, April 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)

Mentioned by

twitter
11 X users
facebook
1 Facebook page

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
122 Mendeley
Title
Rufinamide add‐on therapy for refractory epilepsy
Published in
Cochrane database of systematic reviews, April 2018
DOI 10.1002/14651858.cd011772.pub2
Pubmed ID
Authors

Mariangela Panebianco, Hemanshu Prabhakar, Anthony G Marson

Abstract

Epilepsy is a central nervous system disorder (neurological disorder). Epileptic seizures are the result of excessive and abnormal cortical nerve cell electrical activity in the brain. Despite the development of more than 10 new antiepileptic drugs (AEDs) since the early 2000s, approximately a third of people with epilepsy remain resistant to pharmacotherapy, often requiring treatment with a combination of AEDs. In this review, we summarised the current evidence regarding rufinamide, a novel anticonvulsant medication, which, as a triazole derivative, is structurally unrelated to any other currently used anticonvulsant medication, when used as an add-on treatment for refractory epilepsy. In January 2009, rufinamide was approved by the US Food and Drug Administration for treatment of children four years of age and older with Lennox-Gastaut syndrome. It is also approved as an add-on treatment for adults and adolescents with focal seizures. To evaluate the efficacy and tolerability of rufinamide when used as an add-on treatment in people with refractory epilepsy. On 2 October 2017, we searched the Cochrane Epilepsy Group Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL) via the Cochrane Register of Studies Online (CRSO), MEDLINE (Ovid, 1946), ClinicalTrials.gov and the WHO International Clinical Trials Registry Platform (ICTRP). We imposed no language restrictions. We also contacted the manufacturers of rufinamide and authors in the field to identify any relevant unpublished studies. Randomised, double-blind, placebo-controlled, add-on trials of rufinamide, recruiting people (of any age or gender) with refractory epilepsy. Two review authors independently selected trials for inclusion and extracted the relevant data. We assessed the following outcomes: 50% or greater reduction in seizure frequency (primary outcomes); seizure freedom; treatment withdrawal; and adverse effects (secondary outcomes). Primary analyses were intention-to-treat (ITT) and we presented summary risk ratios (RR) with 95% confidence intervals (CI). We evaluated dose response in regression models. We carried out a risk of bias assessment for each included study using the Cochrane 'Risk of bias' tool and assessed the overall quality of evidence using the GRADE approach, which we presented in a 'Summary of findings' table. The review included six trials, representing 1759 participants. Four trials (1563 participants) included people with uncontrolled focal seizures. Two trials (196 participants) included established Lennox-Gastaut syndrome. Overall, the age of the adults ranged from 18 to 80 years and the age of the infants ranged from four to 16 years. Baseline phase ranged from 28 to 56 days and double-blind phases from 84 to 96 days. Five of the six included trials described adequate methods of concealment of randomisation and only three described adequate blinding. All analyses were by ITT. Overall, five studies were at low risk of bias, and one had unclear risk of bias due to lack of reported information around study design. All trials were sponsored by the manufacturer of rufinamide, and therefore, were at high risk of funding bias.The overall RR for 50% or greater reduction in seizure frequency was 1.79 (95% CI 1.44 to 2.22; 6 RCTs; moderate-quality evidence) indicating that rufinamide (plus conventional AED) was significantly more effective than placebo (plus conventional AED) in reducing seizure frequency by at least 50%, when added to conventionally used AEDs in people with refractory focal epilepsy. The overall RR for treatment withdrawal (for any reason and due to AED) was 1.83 (95% CI 1.45 to 2.31; 6 RCTs; moderate-quality evidence) showing that rufinamide was significantly more likely to be withdrawn than placebo. In respect of adverse effects, most were significantly more likely to occur in the rufinamide-treated group. The adverse events significantly associated with rufinamide were: headache, dizziness, somnolence, vomiting, nausea, fatigue and diplopia. The RRs of these adverse effects were: headache 1.36 (95% Cl 1.08 to 1.69; 3 RCTs; high-quality evidence); dizziness 2.52 (95% Cl 1.90 to 3.34; 3 RCTs; moderate-quality evidence); somnolence 1.94 (95% Cl 1.44 to 2.61; 6 RCTs; moderate-quality evidence); vomiting 2.95 (95% Cl 1.80 to 4.82; 4 RCTs; low-quality evidence); nausea 1.87 (95% Cl 1.33 to 2.64; 3 RCTs; moderate-quality evidence); fatigue 1.46 (95% Cl 1.08 to 1.97; 3 RCTs; moderate-quality evidence); and diplopia 4.60 (95% Cl 2.53 to 8.38; 3 RCTs; low-quality evidence). There was no important heterogeneity between studies for any of the outcomes. Overall, we assessed the evidence as moderate to low quality, due to potential risk of bias from some studies contributing to the analysis and wide CIs. In people with drug-resistant focal epilepsy, rufinamide when used as an add-on treatment was effective in reducing seizure frequency. However, the trials reviewed were of relatively short duration and provided no evidence for the long-term use of rufinamide. In the short term, rufinamide as an add-on was associated with several adverse events. This review focused on the use of rufinamide in drug-resistant focal epilepsy and the results cannot be generalised to add-on treatment for generalised epilepsies. Likewise, no inference can be made about the effects of rufinamide when used as monotherapy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 122 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 122 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 17 14%
Student > Master 15 12%
Student > Ph. D. Student 11 9%
Other 11 9%
Student > Bachelor 7 6%
Other 21 17%
Unknown 40 33%
Readers by discipline Count As %
Medicine and Dentistry 30 25%
Nursing and Health Professions 18 15%
Pharmacology, Toxicology and Pharmaceutical Science 7 6%
Social Sciences 7 6%
Neuroscience 6 5%
Other 9 7%
Unknown 45 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 May 2018.
All research outputs
#6,440,902
of 25,595,500 outputs
Outputs from Cochrane database of systematic reviews
#8,133
of 13,156 outputs
Outputs of similar age
#102,933
of 340,292 outputs
Outputs of similar age from Cochrane database of systematic reviews
#148
of 192 outputs
Altmetric has tracked 25,595,500 research outputs across all sources so far. This one has received more attention than most of these and is in the 74th percentile.
So far Altmetric has tracked 13,156 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 35.8. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,292 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 192 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.