↓ Skip to main content

Cochrane Database of Systematic Reviews

Effects of total fat intake on bodyweight in children

Overview of attention for article published in Cochrane database of systematic reviews, July 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
30 tweeters
facebook
5 Facebook pages
wikipedia
1 Wikipedia page

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
281 Mendeley
Title
Effects of total fat intake on bodyweight in children
Published in
Cochrane database of systematic reviews, July 2018
DOI 10.1002/14651858.cd012960.pub2
Pubmed ID
Authors

Celeste E Naude, Marianne E Visser, Kim A Nguyen, Solange Durao, Anel Schoonees

Abstract

As part of efforts to prevent childhood overweight and obesity, we need to understand the relationship between total fat intake and body fatness in generally healthy children. To assess the effects and associations of total fat intake on measures of weight and body fatness in children and young people not aiming to lose weight. For this update we revised the previous search strategy and ran it over all years in the Cochrane Library, MEDLINE (Ovid), MEDLINE (PubMed), and Embase (Ovid) (current to 23 May 2017). No language and publication status limits were applied. We searched the World Health Organization International Clinical Trials Registry Platform and ClinicalTrials.gov for ongoing and unpublished studies (5 June 2017). We included randomised controlled trials (RCTs) in children aged 24 months to 18 years, with or without risk factors for cardiovascular disease, randomised to a lower fat (30% or less of total energy (TE)) versus usual or moderate-fat diet (greater than 30%TE), without the intention to reduce weight, and assessed a measure of weight or body fatness after at least six months. We included prospective cohort studies if they related baseline total fat intake to weight or body fatness at least 12 months later. We extracted data on participants, interventions or exposures, controls and outcomes, and trial or cohort quality characteristics, as well as data on potential effect modifiers, and assessed risk of bias for all included studies. We extracted body weight and blood lipid levels outcomes at six months, six to 12 months, one to two years, two to five years and more than five years for RCTs; and for cohort studies, at baseline to one year, one to two years, two to five years, five to 10 years and more than 10 years. We planned to perform random-effects meta-analyses with relevant subgrouping, and sensitivity and funnel plot analyses where data allowed. We included 24 studies comprising three parallel-group RCTs (n = 1054 randomised) and 21 prospective analytical cohort studies (about 25,059 children completed). Twenty-three studies were conducted in high-income countries. No meta-analyses were possible, since only one RCT reported the same outcome at each time point range for all outcomes, and cohort studies were too heterogeneous to combine.Effects of dietary counselling to reduce total fat intake from RCTsTwo studies recruited children aged between 4 and 11 years and a third recruited children aged 12 to 13 years. Interventions were combinations of individual and group counselling, and education sessions in clinics, schools and homes, delivered by dieticians, nutritionists, behaviourists or trained, supervised teachers. Concerns about imprecision and poor reporting limited our confidence in our findings. In addition, the inclusion of hypercholesteraemic children in two trials raised concerns about applicability.One study of dietary counselling to lower total fat intake found that the intervention may make little or no difference to weight compared with usual diet at 12 months (mean difference (MD) -0.50 kg, 95% confidence interval (CI) -1.78 to 0.78; n = 620; low-quality evidence) and at three years (MD -0.60 kg, 95% CI -2.39 to 1.19; n = 612; low-quality evidence). Education delivered as a classroom curriculum probably decreased BMI in children at 17 months (MD -1.5 kg/m2, 95% CI -2.45 to -0.55; 1 RCT; n = 191; moderate-quality evidence). The effects were smaller at longer term follow-up (five years: MD 0 kg/m2, 95% CI -0.63 to 0.63; n = 541; seven years; MD -0.10 kg/m2, 95% CI -0.75 to 0.55; n = 576; low-quality evidence).Dietary counselling probably slightly reduced total cholesterol at 12 months compared to controls (MD -0.15 mmol/L, 95% CI -0.24 to -0.06; 1 RCT; n = 618; moderate-quality evidence), but may make little or no difference over longer time periods. Dietary counselling probably slightly decreased low-density lipoprotein (LDL) cholesterol at 12 months (MD -0.12 mmol/L, 95% CI -0.20 to -0.04; 1 RCT; n = 618, moderate-quality evidence) and at five years (MD -0.09, 95% CI -0.17 to -0.01; 1 RCT; n = 623; moderate-quality evidence), compared to controls. Dietary counselling probably made little or no difference to HDL-C at 12 months (MD -0.03 mmol/L, 95% CI -0.08 to 0.02; 1 RCT; n = 618; moderate-quality evidence), and at five years (MD -0.01 mmol/L, 95% CI -0.06 to 0.04; 1 RCT; n = 522; moderate-quality evidence). Likewise, counselling probably made little or no difference to triglycerides in children at 12 months (MD -0.01 mmol/L, 95% CI -0.08 to 0.06; 1 RCT; n = 618; moderate-quality evidence). Lower versus usual or modified fat intake may make little or no difference to height at seven years (MD -0.60 cm, 95% CI -2.06 to 0.86; 1 RCT; n = 577; low-quality evidence).Associations between total fat intake, weight and body fatness from cohort studiesOver half the cohort analyses that reported on primary outcomes suggested that as total fat intake increases, body fatness measures may move in the same direction. However, heterogeneous methods and reporting across cohort studies, and predominantly very low-quality evidence, made it difficult to draw firm conclusions and true relationships may be substantially different. We were unable to reach firm conclusions. Limited evidence from three trials that randomised children to dietary counselling or education to lower total fat intake (30% or less TE) versus usual or modified fat intake, but with no intention to reduce weight, showed small reductions in body mass index, total- and LDL-cholesterol at some time points with lower fat intake compared to controls. There were no consistent effects on weight, high-density lipoprotein (HDL) cholesterol or height. Associations in cohort studies that related total fat intake to later measures of body fatness in children were inconsistent and the quality of this evidence was mostly very low. Most studies were conducted in high-income countries, and may not be applicable in low- and middle-income settings. High-quality, longer-term studies are needed, that include low- and middle-income settings to look at both possible benefits and harms.

Twitter Demographics

The data shown below were collected from the profiles of 30 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 281 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 281 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 60 21%
Researcher 32 11%
Student > Bachelor 31 11%
Student > Ph. D. Student 22 8%
Student > Postgraduate 16 6%
Other 50 18%
Unknown 70 25%
Readers by discipline Count As %
Medicine and Dentistry 68 24%
Nursing and Health Professions 51 18%
Social Sciences 17 6%
Psychology 12 4%
Pharmacology, Toxicology and Pharmaceutical Science 9 3%
Other 39 14%
Unknown 85 30%

Attention Score in Context

This research output has an Altmetric Attention Score of 21. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 July 2020.
All research outputs
#1,060,642
of 16,568,277 outputs
Outputs from Cochrane database of systematic reviews
#2,862
of 11,533 outputs
Outputs of similar age
#30,189
of 279,431 outputs
Outputs of similar age from Cochrane database of systematic reviews
#66
of 167 outputs
Altmetric has tracked 16,568,277 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,533 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 24.4. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,431 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 167 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.