↓ Skip to main content

Cochrane Database of Systematic Reviews

Endovascular coiling versus neurosurgical clipping for people with aneurysmal subarachnoid haemorrhage

Overview of attention for article published in Cochrane database of systematic reviews, August 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

blogs
1 blog
twitter
17 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
129 Dimensions

Readers on

mendeley
277 Mendeley
Title
Endovascular coiling versus neurosurgical clipping for people with aneurysmal subarachnoid haemorrhage
Published in
Cochrane database of systematic reviews, August 2018
DOI 10.1002/14651858.cd003085.pub3
Pubmed ID
Authors

Antti Lindgren, Mervyn DI Vergouwen, Irene van der Schaaf, Ale Algra, Marieke Wermer, Mike J Clarke, Gabriel JE Rinkel

Abstract

Around 30% of people who are admitted to hospital with aneurysmal subarachnoid haemorrhage (SAH) will rebleed in the initial month after the haemorrhage if the aneurysm is not treated. The two most commonly used methods to occlude the aneurysm for prevention of rebleeding are microsurgical clipping of the neck of the aneurysm and occlusion of the lumen of the aneurysm by means of endovascular coiling. This is an update of a systematic review that was previously published in 2005. To compare the effects of endovascular coiling versus neurosurgical clipping in people with aneurysmal SAH on poor outcome, rebleeding, neurological deficit, and treatment complications. We searched the Cochrane Stroke Group Trials Register (March 2018). In addition, we searched CENTRAL (2018, Issue 2), MEDLINE (1966 to March 2018), Embase (1980 to March 2018), US National Institutes of Health Ongoing Trials Register (March 2018), and World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (last searched March 2018). We also contacted trialists. We included randomised trials comparing endovascular coiling with neurosurgical clipping in people with SAH from a ruptured aneurysm. Two review authors independently extracted data, and assessed trial quality and risk of bias using the GRADE approach. We contacted trialists to obtain missing information. We defined poor outcome as death or dependence in daily activities (modified Rankin scale 3 to 6 or Glasgow Outcome Scale (GOS) 1 to 3). In the special worst-case scenario analysis, we assumed all participants in the group with better outcome with missing follow-up information had a poor outcome and those in the other group with missing data a good outcome. We included four randomised trials involving 2458 participants (range per trial: 20 to 2143 participants). Evidence is mostly based on the largest trial. Most participants were in good clinical condition and had an aneurysm on the anterior circulation. None of the included trials was at low risk of bias in all domains. One trial was at unclear risk in one domain, two trials at unclear risk in three domains, and one trial at high risk in one domain.After one year of follow-up, 24% of participants randomised to endovascular treatment and 32% of participants randomised to the surgical treatment group had poor functional outcome. The risk ratio (RR) of poor outcome (death or dependency) for endovascular coiling versus neurosurgical clipping was 0.77 (95% confidence interval (CI) 0.67 to 0.87; 4 trials, 2429 participants, moderate-quality evidence), and the absolute risk reduction was 7% (95% CI 4% to 11%). In the worst-case scenario analysis for poor outcome, the RR for endovascular coiling versus neurosurgical clipping was 0.80 (95% CI 0.71 to 0.91), and the absolute risk reduction was 6% (95% CI 2% to 10%). The RR of death at 12 months was 0.80 (95% CI 0.63 to 1.02; 4 trials, 2429 participants, moderate-quality evidence). In a subgroup analysis of participants with an anterior circulation aneurysm, the RR of poor outcome was 0.78 (95% CI 0.68 to 0.90; 2 trials, 2157 participants, moderate-quality evidence), and the absolute risk decrease was 7% (95% CI 3% to 10%). In subgroup analysis of those with a posterior circulation aneurysm, the RR was 0.41 (95% CI 0.19 to 0.92; 2 trials, 69 participants, low-quality evidence), and the absolute decrease in risk was 27% (95% CI 6% to 48%). At five years, 28% of participants randomised to endovascular treatment and 32% of participants randomised to surgical treatment had poor functional outcome. The RR of poor outcome for endovascular coiling versus neurosurgical clipping was 0.87 (95% CI 0.75 to 1.01, 1 trial, 1724 participants, low-quality evidence). At 10 years, 35% participants allocated to endovascular and 43% participants allocated to surgical treatment had poor functional outcome. At 10 years RR of poor outcome for endovascular coiling versus neurosurgical clipping was 0.81 (95% CI 0.70 to 0.92; 1 trial, 1316 participants, low-quality evidence). The RR of delayed cerebral ischaemia at two to three months for endovascular coiling versus neurosurgical clipping was 0.84 (95% CI 0.74 to 0.96; 4 trials, 2450 participants, moderate-quality evidence). The RR of rebleeding for endovascular coiling versus neurosurgical clipping was 1.83 (95% CI 1.04 to 3.23; 4 trials, 2458 participants, high-quality evidence) at one year, and 2.69 (95% CI 1.50 to 4.81; 1 trial, 1323 participants, low-quality evidence) at 10 years. The RR of complications from intervention for endovascular coiling versus neurosurgical clipping was 1.05 (95% CI 0.44 to 2.53; 2 trials, 129 participants, low-quality evidence). The evidence in this systematic review comes mainly from one large trial, and long-term follow-up is available only for a subgroup of participants within that trial. For people in good clinical condition with ruptured aneurysms of either the anterior or posterior circulation the data from randomised trials show that, if the aneurysm is considered suitable for both neurosurgical clipping and endovascular coiling, coiling is associated with a better outcome. There is no reliable trial evidence that can be used directly to guide treatment in people with a poor clinical condition.

X Demographics

X Demographics

The data shown below were collected from the profiles of 17 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 277 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 277 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 29 10%
Student > Bachelor 29 10%
Researcher 28 10%
Student > Ph. D. Student 22 8%
Other 20 7%
Other 42 15%
Unknown 107 39%
Readers by discipline Count As %
Medicine and Dentistry 88 32%
Nursing and Health Professions 18 6%
Neuroscience 15 5%
Biochemistry, Genetics and Molecular Biology 5 2%
Engineering 5 2%
Other 25 9%
Unknown 121 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 21. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 December 2021.
All research outputs
#1,774,568
of 25,461,852 outputs
Outputs from Cochrane database of systematic reviews
#3,799
of 12,090 outputs
Outputs of similar age
#35,839
of 340,809 outputs
Outputs of similar age from Cochrane database of systematic reviews
#73
of 159 outputs
Altmetric has tracked 25,461,852 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,090 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 38.2. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,809 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 159 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.