↓ Skip to main content

Cochrane Database of Systematic Reviews

Multi‐disciplinary rehabilitation for acquired brain injury in adults of working age

Overview of attention for article published in Cochrane database of systematic reviews, December 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

blogs
1 blog
policy
1 policy source
twitter
3 X users
facebook
1 Facebook page
wikipedia
8 Wikipedia pages

Citations

dimensions_citation
220 Dimensions

Readers on

mendeley
801 Mendeley
Title
Multi‐disciplinary rehabilitation for acquired brain injury in adults of working age
Published in
Cochrane database of systematic reviews, December 2015
DOI 10.1002/14651858.cd004170.pub3
Pubmed ID
Authors

Lynne Turner‐Stokes, Anton Pick, Ajoy Nair, Peter B Disler, Derick T Wade

Abstract

Evidence from systematic reviews demonstrates that multi-disciplinary rehabilitation is effective in the stroke population, in which older adults predominate. However, the evidence base for the effectiveness of rehabilitation following acquired brain injury (ABI) in younger adults has not been established, perhaps because this scenario presents different methodological challenges in research. To assess the effects of multi-disciplinary rehabilitation following ABI in adults 16 to 65 years of age. We ran the most recent search on 14 September 2015. We searched the Cochrane Injuries Group Specialised Register, The Cochrane Library, Ovid MEDLINE(R), Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid OLDMEDLINE(R), Embase Classic+Embase (OvidSP), Web of Science (ISI WOS) databases, clinical trials registers, and we screened reference lists. Randomised controlled trials (RCTs) comparing multi-disciplinary rehabilitation versus routinely available local services or lower levels of intervention; or trials comparing an intervention in different settings, of different intensities or of different timing of onset. Controlled clinical trials were included, provided they met pre-defined methodological criteria. Three review authors independently selected trials and rated their methodological quality. A fourth review author would have arbitrated if consensus could not be reached by discussion, but in fact, this did not occur. As in previous versions of this review, we used the method described by Van Tulder 1997 to rate the quality of trials and to perform a 'best evidence' synthesis by attributing levels of evidence on the basis of methodological quality. Risk of bias assessments were performed in parallel using standard Cochrane methodology. However, the Van Tulder system provided a more discriminative evaluation of rehabilitation trials, so we have continued to use it for our primary synthesis of evidence. We subdivided trials in terms of severity of brain injury, setting and type and timing of rehabilitation offered. We identified a total of 19 studies involving 3480 people. Twelve studies were of good methodological quality and seven were of lower quality, according to the van Tulder scoring system. Within the subgroup of predominantly mild brain injury, 'strong evidence' suggested that most individuals made a good recovery when appropriate information was provided, without the need for additional specific interventions. For moderate to severe injury, 'strong evidence' showed benefit from formal intervention, and 'limited evidence' indicated that commencing rehabilitation early after injury results in better outcomes. For participants with moderate to severe ABI already in rehabilitation, 'strong evidence' revealed that more intensive programmes are associated with earlier functional gains, and 'moderate evidence' suggested that continued outpatient therapy could help to sustain gains made in early post-acute rehabilitation. The context of multi-disciplinary rehabilitation appears to influence outcomes. 'Strong evidence' supports the use of a milieu-oriented model for patients with severe brain injury, in which comprehensive cognitive rehabilitation takes place in a therapeutic environment and involves a peer group of patients. 'Limited evidence' shows that specialist in-patient rehabilitation and specialist multi-disciplinary community rehabilitation may provide additional functional gains, but studies serve to highlight the particular practical and ethical restraints imposed on randomisation of severely affected individuals for whom no realistic alternatives to specialist intervention are available. Problems following ABI vary. Consequently, different interventions and combinations of interventions are required to meet the needs of patients with different problems. Patients who present acutely to hospital with mild brain injury benefit from follow-up and appropriate information and advice. Those with moderate to severe brain injury benefit from routine follow-up so their needs for rehabilitation can be assessed. Intensive intervention appears to lead to earlier gains, and earlier intervention whilst still in emergency and acute care has been supported by limited evidence. The balance between intensity and cost-effectiveness has yet to be determined. Patients discharged from in-patient rehabilitation benefit from access to out-patient or community-based services appropriate to their needs. Group-based rehabilitation in a therapeutic milieu (where patients undergo neuropsychological rehabilitation in a therapeutic environment with a peer group of individuals facing similar challenges) represents an effective approach for patients requiring neuropsychological rehabilitation following severe brain injury. Not all questions in rehabilitation can be addressed by randomised controlled trials or other experimental approaches. For example, trial-based literature does not tell us which treatments work best for which patients over the long term, and which models of service represent value for money in the context of life-long care. In the future, such questions will need to be considered alongside practice-based evidence gathered from large systematic longitudinal cohort studies conducted in the context of routine clinical practice.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 801 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 <1%
United Kingdom 2 <1%
South Africa 1 <1%
Belgium 1 <1%
Brazil 1 <1%
Unknown 793 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 135 17%
Researcher 73 9%
Student > Ph. D. Student 72 9%
Student > Bachelor 68 8%
Student > Doctoral Student 48 6%
Other 152 19%
Unknown 253 32%
Readers by discipline Count As %
Medicine and Dentistry 160 20%
Nursing and Health Professions 123 15%
Psychology 70 9%
Neuroscience 45 6%
Social Sciences 32 4%
Other 86 11%
Unknown 285 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 15. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 August 2022.
All research outputs
#2,483,125
of 25,931,626 outputs
Outputs from Cochrane database of systematic reviews
#4,919
of 13,164 outputs
Outputs of similar age
#39,605
of 398,843 outputs
Outputs of similar age from Cochrane database of systematic reviews
#116
of 260 outputs
Altmetric has tracked 25,931,626 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,164 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 35.2. This one has gotten more attention than average, scoring higher than 62% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 398,843 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 260 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.