↓ Skip to main content

Cochrane Database of Systematic Reviews

Antithrombin III for critically ill patients

Overview of attention for article published in Cochrane database of systematic reviews, February 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
9 tweeters
facebook
5 Facebook pages

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
234 Mendeley
citeulike
1 CiteULike
Title
Antithrombin III for critically ill patients
Published in
Cochrane database of systematic reviews, February 2016
DOI 10.1002/14651858.cd005370.pub3
Pubmed ID
Authors

Mikkel Allingstrup, Jørn Wetterslev, Frederikke B Ravn, Ann Merete Møller, Arash Afshari

Abstract

Critical illness is associated with uncontrolled inflammation and vascular damage which can result in multiple organ failure and death. Antithrombin III (AT III) is an anticoagulant with anti-inflammatory properties but the efficacy and any harmful effects of AT III supplementation in critically ill patients are unknown. This review was published in 2008 and updated in 2015. To examine:1. The effect of AT III on mortality in critically ill participants.2. The benefits and harms of AT III.We investigated complications specific and not specific to the trial intervention, bleeding events, the effect on sepsis and disseminated intravascular coagulation (DIC) and the length of stay in the intensive care unit (ICU) and in hospital in general. We searched the following databases from inception to 27 August 2015: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid SP), EMBASE (Ovid SP,), CAB, BIOSIS and CINAHL. We contacted the main authors of trials to ask for any missed, unreported or ongoing trials. We included randomized controlled trials (RCTs) irrespective of publication status, date of publication, blinding status, outcomes published, or language. We contacted the investigators and the trial authors in order to retrieve missing data. In this updated review we include trials only published as abstracts. Our primary outcome measure was mortality. Two authors each independently abstracted data and resolved any disagreements by discussion. We presented pooled estimates of the intervention effects on dichotomous outcomes as risk ratios (RR) with 95% confidence intervals (CI). We performed subgroup analyses to assess risk of bias, the effect of AT III in different populations (sepsis, trauma, obstetrics, and paediatrics), and the effect of AT III in patients with or without the use of concomitant heparin. We assessed the adequacy of the available number of participants and performed trial sequential analysis (TSA) to establish the implications for further research. We included 30 RCTs with a total of 3933 participants (3882 in the primary outcome analyses).Combining all trials, regardless of bias, showed no statistically significant effect of AT III on mortality with a RR of 0.95 (95% CI 0.88 to 1.03), I² statistic = 0%, fixed-effect model, 29 trials, 3882 participants, moderate quality of evidence). For trials with low risk of bias the RR was 0.96 (95% Cl 0.88 to 1.04, I² statistic = 0%, fixed-effect model, 9 trials, 2915 participants) and for high risk of bias RR 0.94 (95% Cl 0.77 to 1.14, I² statistic = 0%, fixed-effect model, 20 trials, 967 participants).For participants with severe sepsis and DIC the RR for mortality was non-significant, 0.95 (95% Cl 0.88 to 1.03, I² statistic = 0%, fixed-effect model, 12 trials, 2858 participants, moderate quality of evidence).We conducted 14 subgroup and sensitivity analyses with respect to the different domains of risk of bias, but detected no statistically significant benefit in any subgroup analyses.Our secondary objective was to assess the benefits and harms of AT III. For complications specific to the trial intervention the RR was 1.26 (95% Cl 0.83 to 1.92, I² statistic = 0%, random-effect model, 3 trials, 2454 participants, very low quality of evidence). For complications not specific to the trial intervention, the RR was 0.71 (95% Cl 0.08 to 6.11, I² statistic = 28%, random-effects model, 2 trials, 65 participants, very low quality of evidence). For complications other than bleeding, the RR was 0.72 ( 95% Cl 0.42 to 1.25, I² statistic = 0%, fixed-effect model, 3 trials, 187 participants, very low quality of evidence). Eleven trials investigated bleeding events and we found a statistically significant increase, RR 1.58 (95% CI 1.35 to 1.84, I² statistic = 0%, fixed-effect model, 11 trials, 3019 participants, moderate quality of evidence) in the AT III group. The amount of red blood cells administered had a mean difference (MD) of 138.49 (95% Cl -391.35 to 668.34, I² statistic = 84%, random-effect model, 4 trials, 137 participants, very low quality of evidence). The effect of AT III in patients with multiple organ failure (MOF) was a MD of -1.24 (95% Cl -2.18 to -0.29, I² statistic = 48%, random-effects model, 3 trials, 156 participants, very low quality of evidence) and for patients with an Acute Physiology and Chronic Health Evaluation score (APACHE) at II and III the MD was -2.18 (95% Cl -4.36 to -0.00, I² statistic = 0%, fixed-effect model, 3 trials, 102 participants, very low quality of evidence). The incidence of respiratory failure had a RR of 0.93 (95% Cl 0.76 to 1.14, I² statistic = 32%, random-effects model, 6 trials, 2591 participants, moderate quality of evidence). AT III had no statistically significant impact on the duration of mechanical ventilation (MD 2.20 days, 95% Cl -1.21 to 5.60, I² statistic = 0%, fixed-effect model, 3 trials, 190 participants, very low quality of evidence); on the length of stay in the ICU (MD 0.24, 95% Cl -1.34 to 1.83, I² statistic = 0%, fixed-effect model, 7 trials, 376 participants, very low quality of evidence) or on the length of stay in hospital in general (MD 1.10, 95% Cl -7.16 to 9.36), I² statistic = 74%, 4 trials, 202 participants, very low quality of evidence). There is insufficient evidence to support AT III substitution in any category of critically ill participants including the subset of patients with sepsis and DIC. We did not find a statistically significant effect of AT III on mortality, but AT III increased the risk of bleeding events. Subgroup analyses performed according to duration of intervention, length of follow-up, different patient groups, and use of adjuvant heparin did not show differences in the estimates of intervention effects. The majority of included trials were at high risk of bias (GRADE; very low quality of evidence for most of the analyses). Hence a large RCT of AT III is needed, without adjuvant heparin among critically ill patients such as those with severe sepsis and DIC, with prespecified inclusion criteria and good bias protection.

Twitter Demographics

The data shown below were collected from the profiles of 9 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 234 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 3 1%
United Kingdom 2 <1%
Belgium 1 <1%
Unknown 228 97%

Demographic breakdown

Readers by professional status Count As %
Student > Master 44 19%
Student > Bachelor 25 11%
Student > Doctoral Student 20 9%
Researcher 19 8%
Student > Ph. D. Student 19 8%
Other 56 24%
Unknown 51 22%
Readers by discipline Count As %
Medicine and Dentistry 106 45%
Nursing and Health Professions 21 9%
Pharmacology, Toxicology and Pharmaceutical Science 11 5%
Psychology 11 5%
Social Sciences 10 4%
Other 21 9%
Unknown 54 23%

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 April 2020.
All research outputs
#4,331,338
of 18,156,431 outputs
Outputs from Cochrane database of systematic reviews
#6,488
of 11,808 outputs
Outputs of similar age
#78,785
of 354,024 outputs
Outputs of similar age from Cochrane database of systematic reviews
#112
of 184 outputs
Altmetric has tracked 18,156,431 research outputs across all sources so far. Compared to these this one has done well and is in the 76th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,808 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.5. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 354,024 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 184 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.