↓ Skip to main content

Cochrane Database of Systematic Reviews

Vapocoolants (cold spray) for pain treatment during intravenous cannulation

Overview of attention for article published in Cochrane database of systematic reviews, April 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (94th percentile)
  • Good Attention Score compared to outputs of the same age and source (74th percentile)

Mentioned by

twitter
58 tweeters
facebook
4 Facebook pages
wikipedia
4 Wikipedia pages

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
164 Mendeley
Title
Vapocoolants (cold spray) for pain treatment during intravenous cannulation
Published in
Cochrane database of systematic reviews, April 2016
DOI 10.1002/14651858.cd009484.pub2
Pubmed ID
Authors

Rebecca J Griffith, Vanessa Jordan, David Herd, Peter W Reed, Stuart R Dalziel

Abstract

Intravenous cannulation is a painful procedure that can provoke anxiety and stress. Injecting local anaesthetic can provide analgesia at the time of cannulation, but it is a painful procedure. Topical anaesthetic creams take between 30 and 90 minutes to produce an effect. A quicker acting analgesic allows more timely investigation and treatment. Vapocoolants have been used in this setting, but studies have reported mixed results. To determine effects of vapocoolants on pain associated with intravenous cannulation in adults and children. To explore variables that might affect the performance of vapocoolants, including time required for application, distance from the skin when applied and time to cannulation. To look at adverse effects associated with the use of vapocoolants. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, Latin American Caribbean Health Sciences Literature (LILACS), the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Institute for Scientific Information (ISI) Web of Science and the http://clinicaltrials.gov/, http://www.controlled-trials.com/ and http://www.trialscentral.org/ databases to 1 May 2015. We applied no language restrictions. We also scanned the reference lists of included papers. We included all blinded and unblinded randomized controlled trials (RTCs) comparing any vapocoolant with placebo or control to reduce pain during intravenous cannulation in adults and children. Three review authors independently assessed trial quality and extracted data, contacted study authors for additional information and assessed included studies for risk of bias. We collected and analysed data for the primary outcome of pain during cannulation, and for the secondary outcomes of pain associated with application of the vapocoolant, first attempt success rate of intravenous cannulation, adverse events and participant satisfaction. We performed subgroup analyses for the primary outcome to examine differences based on age of participant, type of vapocoolant used, application time of vapocoolant and clinical situation (emergency vs elective). We used random-effects model meta-analysis in RevMan 5.3 and assessed heterogeneity between trial results by examining forest plots and calculating the I(2) statistic. We found nine suitable studies of 1070 participants and included them in the qualitative analyses. We included eight studies of 848 participants in the meta-analysis for the primary outcome (pain during intravenous cannulation). Use of vapocoolants resulted in a reduction in pain scores as measured by a linear 100 mm visual analogue scale (VAS 100) compared with controls (difference between means -12.5 mm, 95% confidence interval (CI) -18.7 to -6.4 mm; moderate-quality evidence). We could not include in the meta-analysis one study, which showed no effects of the intervention.Use of vapocoolants resulted in increased pain scores at the time of application as measured by a VAS 100 compared with controls (difference between means 6.3 mm, 95% CI 2.2 to 10.3 mm; four studies, 461 participants; high-quality evidence) and led to no difference in first attempt success compared with controls (risk ratio (RR) 1.00, 95% CI 0.94 to 1.06; six studies, 812 participants; moderate-quality evidence). We documented eight minor adverse events reported in 279 vapocoolant participants (risk difference (RD) 0.03, 95% CI 0 to 0.05; five studies, 551 participants; low quality-evidence).The overall risk of bias of individual studies ranged from low to high, with high risk of bias for performance and detection bias in four studies. Sensitivity analysis showed that exclusion of studies at high or unclear risk of bias did not materially alter the results of this review. Moderate-quality evidence indicates that use of a vapocoolant immediately before intravenous cannulation reduces pain during the procedure. Use of vapocoolant does not increase the difficulty of cannulation nor cause serious adverse effects but is associated with mild discomfort during application.

Twitter Demographics

The data shown below were collected from the profiles of 58 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 164 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 <1%
Unknown 163 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 30 18%
Student > Bachelor 26 16%
Researcher 17 10%
Student > Ph. D. Student 14 9%
Other 12 7%
Other 30 18%
Unknown 35 21%
Readers by discipline Count As %
Medicine and Dentistry 45 27%
Nursing and Health Professions 30 18%
Psychology 15 9%
Pharmacology, Toxicology and Pharmaceutical Science 7 4%
Social Sciences 5 3%
Other 17 10%
Unknown 45 27%

Attention Score in Context

This research output has an Altmetric Attention Score of 38. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 September 2020.
All research outputs
#660,427
of 17,475,439 outputs
Outputs from Cochrane database of systematic reviews
#1,650
of 11,701 outputs
Outputs of similar age
#15,413
of 270,093 outputs
Outputs of similar age from Cochrane database of systematic reviews
#48
of 184 outputs
Altmetric has tracked 17,475,439 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,701 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.2. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 270,093 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 94% of its contemporaries.
We're also able to compare this research output to 184 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.