↓ Skip to main content

Cochrane Database of Systematic Reviews

Lateral positioning for critically ill adult patients

Overview of attention for article published in Cochrane database of systematic reviews, May 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

19 tweeters
7 Facebook pages


19 Dimensions

Readers on

289 Mendeley
Lateral positioning for critically ill adult patients
Published in
Cochrane database of systematic reviews, May 2016
DOI 10.1002/14651858.cd007205.pub2
Pubmed ID

Nicky Hewitt, Tracey Bucknall, Nardene M Faraone


Critically ill patients require regular body position changes to minimize the adverse effects of bed rest, inactivity and immobilization. However, uncertainty surrounds the effectiveness of lateral positioning for improving pulmonary gas exchange, aiding drainage of tracheobronchial secretions and preventing morbidity. In addition, it is unclear whether the perceived risk levied by respiratory and haemodynamic instability upon turning critically ill patients outweighs the respiratory benefits of side-to-side rotation. Thus, lack of certainty may contribute to variation in positioning practice and equivocal patient outcomes. To evaluate effects of the lateral position compared with other body positions on patient outcomes (mortality, morbidity and clinical adverse events) in critically ill adult patients. (Clinical adverse events include hypoxaemia, hypotension, low oxygen delivery and global indicators of impaired tissue oxygenation.) We examined single use of the lateral position (i.e. on the right or left side) and repeat use of the lateral position (i.e. lateral positioning) within a positioning schedule. We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2015, Issue 5), MEDLINE (1950 to 23 May 2015), the Cumulative Index to Nursing and Allied Health Literature (CINAHL) (1937 to 23 May 2015), the Allied and Complementary Medicine Database (AMED) (1984 to 23 May 2015), Latin American Caribbean Health Sciences Literature (LILACS) (1901 to 23 May 2015), Web of Science (1945 to 23 May 2015), Index to Theses in Great Britain and Ireland (1950 to 23 May 2015), Trove (2009 to 23 May 2015; previously Australasian Digital Theses Program (1997 to December 2008)) and Proquest Dissertations and Theses (2009 to 23 May 2015; previously Proquest Digital Dissertations (1980 to 23 May 2015)). We handsearched the reference lists of potentially relevant reports and two nursing journals. We included randomized and quasi-randomized trials examining effects of lateral positioning in critically ill adults. We included manual or automated turns but limited eligibility to studies that included duration of body position of 10 minutes or longer. We examined each lateral position versus at least one comparator (opposite lateral position and/or another body position) for single therapy effects, and the lateral positioning schedule (repeated lateral turning) versus other positioning schedules for repetitive therapy effects. We pre-specified methods to be used for data collection, risk of bias assessment and analysis. Two independent review authors carried out each stage of selection and data extraction and settled differences in opinion by consensus, or by third party adjudication when disagreements remained unresolved. We planned analysis of pair-wise comparisons under composite time intervals with the aim of considering recommendations based on meta-analyses of studies with low risk of bias. We included 24 studies of critically ill adults. No study reported mortality as an outcome of interest. Two randomized controlled trials (RCTs) examined lateral positioning for pulmonary morbidity outcomes but provided insufficient information for meta-analysis. A total of 22 randomized trials examined effects of lateral positioning (four parallel-group and 18 cross-over designs) by measuring various continuous data outcomes commonly used to detect adverse cardiopulmonary events within critical care areas. However, parallel-group studies were not comparable, and cross-over studies provided limited data as the result of unit of analysis errors. Eight studies provided some data; most of these were single studies with small effects that were imprecise. We pooled partial pressure of arterial oxygen (PaO2) as a measure to detect hypoxaemia from two small studies of participants with unilateral lung disease (n = 19). The mean difference (MD) between lateral positions (bad lung down versus good lung down) was approximately 50 mmHg (MD -49.26 mmHg, 95% confidence interval (CI) -67.33 to -31.18; P value < 0.00001). Despite a lower mean PaO2 for bad lung down, hypoxaemia (mean PaO2 < 60 mmHg) was not consistently reported. Furthermore, pooled data had methodological shortcomings with unclear risk of bias. We had similar doubts regarding internal validity for other studies included in the review. Review authors could provide no clinical practice recommendations based on the findings of included studies. Available research could not eliminate the uncertainty surrounding benefits and/or risks associated with lateral positioning of critically ill adult patients. Research gaps include the effectiveness of lateral positioning compared with semi recumbent positioning for mechanically ventilated patients, lateral positioning compared with prone positioning for acute respiratory distress syndrome (ARDS) and less frequent changes in body position. We recommend that future research be undertaken to address whether the routine practice of repositioning patients on their side benefits all, some or few critically ill patients.

Twitter Demographics

The data shown below were collected from the profiles of 19 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 289 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 <1%
United Kingdom 1 <1%
South Africa 1 <1%
Unknown 285 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 57 20%
Student > Bachelor 48 17%
Researcher 32 11%
Other 23 8%
Student > Ph. D. Student 17 6%
Other 57 20%
Unknown 55 19%
Readers by discipline Count As %
Medicine and Dentistry 96 33%
Nursing and Health Professions 68 24%
Social Sciences 9 3%
Pharmacology, Toxicology and Pharmaceutical Science 9 3%
Psychology 8 3%
Other 38 13%
Unknown 61 21%

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 April 2021.
All research outputs
of 17,634,657 outputs
Outputs from Cochrane database of systematic reviews
of 11,724 outputs
Outputs of similar age
of 271,219 outputs
Outputs of similar age from Cochrane database of systematic reviews
of 187 outputs
Altmetric has tracked 17,634,657 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,724 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.2. This one has gotten more attention than average, scoring higher than 63% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 271,219 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 187 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.